8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopamine-containing neurons, but the molecular pathways underlying its pathogenesis remain uncertain. Here, we show that by eliminating c-Jun N-terminal kinases (JNKs) we can prevent neurodegeneration and improve motor function in an animal model of PD. First, we found that c-Jun is activated in dopaminergic neurons from PD patients and in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (MPTP) mouse model of PD. Examination of various JNK-deficient mice shows that both JNK2 and JNK3, but not JNK1, are required for MPTP-induced c-Jun activation and dopaminergic cell demise. Furthermore, we have identified cyclooxygenase (COX) 2 as a molecular target of JNK activation and demonstrated that COX-2 is indispensable for MPTP-induced dopaminergic cell death. Our data revealed that JNK2- and JNK3-induced COX-2 may be a principle pathway responsible for neurodegeneration in PD.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.

          MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration.

            Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of the nigrostriatal dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increased expression of cyclooxygenase type 2 (COX-2) and production of prostaglandin E(2) have been implicated in neurodegeneration in several pathological settings. Here we show that COX-2, the rate-limiting enzyme in prostaglandin E(2) synthesis, is up-regulated in brain dopaminergic neurons of both PD and MPTP mice. COX-2 induction occurs through a JNKc-Jun-dependent mechanism after MPTP administration. We demonstrate that targeting COX-2 does not protect against MPTP-induced dopaminergic neurodegeneration by mitigating inflammation. Instead, we provide evidence that COX-2 inhibition prevents the formation of the oxidant species dopamine-quinone, which has been implicated in the pathogenesis of PD. This study supports a critical role for COX-2 in both the pathogenesis and selectivity of the PD neurodegenerative process. Because of the safety record of the COX-2 inhibitors, and their ability to penetrate the blood-brain barrier, these drugs may be therapies for PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development.

              The c-Jun NH2-terminal kinase (Jnk) family is implicated in apoptosis, but its function in brain development is unclear. Here, we address this issue using mutant mice lacking different members of the family (Jnk1, Jnk2, and Jnk3). Mice deficient in Jnk1, Jnk2, Jnk3, and Jnk1/Jnk3 or Jnk2/Jnk3 double mutants all survived normally. Compound mutants lacking Jnk1 and Jnk2 genes were embryonic lethal and had severe dysregulation of apoptosis in brain. Specifically, there was a reduction of cell death in the lateral edges of hindbrain prior to neural tube closure. In contrast, increased apoptosis and caspase activation were found in the mutant forebrain, leading to precocious degeneration. These results suggest that Jnk1 and Jnk2 regulate region-specific apoptosis during early brain development.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 13 2004
                January 13 2004
                January 02 2004
                January 13 2004
                : 101
                : 2
                : 665-670
                Article
                10.1073/pnas.0307453101
                327205
                14704277
                5fe1fe21-b4fe-4f22-9b1d-d09f3e7fb1c3
                © 2004
                History

                Comments

                Comment on this article