17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Renal Elasticity Quantification by Acoustic Radiation Force Impulse Applied to the Evaluation of Kidney Diseases : A Review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          On the feasibility of remote palpation using acoustic radiation force.

          A method of acoustic remote palpation, capable of imaging local variations in the mechanical properties of tissue, is under investigation. In this method, focused ultrasound is used to apply localized (on the order of 2 mm3) radiation force within tissue. and the resulting tissue displacements are mapped using ultrasonic correlation based methods. The tissue displacements are inversely proportional to the stiffness of the tissue, and thus a stiffer region of tissue exhibits smaller displacements than a more compliant region. In this paper, the feasibility of remote palpation is demonstrated experimentally using breast tissue phantoms with spherical lesion inclusions, and in vitro liver samples. A single diagnostic transducer and modified ultrasonic imaging system are used to perform remote palpation. The displacement images are directly correlated to local variations in tissue stiffness with higher contrast than the corresponding B-mode images. Relationships between acoustic beam parameters, lesion characteristics and radiation force induced tissue displacement patterns are investigated and discussed. The results show promise for the clinical implementation of remote palpation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acoustic Radiation Force Impulse (ARFI) Imaging: a Review.

            Acoustic radiation force based elasticity imaging methods are under investigation by many groups. These methods differ from traditional ultrasonic elasticity imaging methods in that they do not require compression of the transducer, and are thus expected to be less operator dependent. Methods have been developed that utilize impulsive (i.e. < 1 ms), harmonic (pulsed), and steady state radiation force excitations. The work discussed herein utilizes impulsive methods, for which two imaging approaches have been pursued: 1) monitoring the tissue response within the radiation force region of excitation (ROE) and generating images of relative differences in tissue stiffness (Acoustic Radiation Force Impulse (ARFI) imaging); and 2) monitoring the speed of shear wave propagation away from the ROE to quantify tissue stiffness (Shear Wave Elasticity Imaging (SWEI)). For these methods, a single ultrasound transducer on a commercial ultrasound system can be used to both generate acoustic radiation force in tissue, and to monitor the tissue displacement response. The response of tissue to this transient excitation is complicated and depends upon tissue geometry, radiation force field geometry, and tissue mechanical and acoustic properties. Higher shear wave speeds and smaller displacements are associated with stiffer tissues, and slower shear wave speeds and larger displacements occur with more compliant tissues. ARFI images have spatial resolution comparable to that of B-mode, often with greater contrast, providing matched, adjunctive information. SWEI images provide quantitative information about the tissue stiffness, typically with lower spatial resolution. A review these methods and examples of clinical applications are presented herein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy.

              The in vivo influence of renal anisotropy and of urinary and vascular pressure on elasticity values using ultrasonic supersonic shear wave elastography was studied in pigs. Experiments were conducted in agreement with the European Commission guidelines and directives of the French Research Ministry. Six kidneys in three pigs were studied in vivo. Elasticity of renal cortex and medulla was quantified through the shear modulus (μ) by using the supersonic shear imaging technique with an 8 MHz linear ultrasound probe. All measurements were done peroperatively both in the axis and perpendicular to the main axis of pyramids, in normal condition, after progressive increase of urinary pressure, and after renal artery and renal vein ligation. In normal conditions, cortical (C) and medullary (M) elasticity values were always higher when acquisitions were realized with the ultrasound main axis perpendicular to main pyramid axis (C(//): 7.7 ± 2.3 kPa; M(//): 8.7 ± 2.5 kPa) than parallel (C(⊥): 6.9 ± 1.4 kPa; M(⊥): 6.6 ± 2.3 kPa), demonstrating an effect of renal anisotropy. In renal cortex, two bands were separated, inner cortex showing higher elasticity values (IC(⊥): 8.1 ± 1.9 kPa) than outer cortex (OC(⊥): 6.9 ± 1.4 kPa). Renal artery and renal vein ligation induced a decrease and an increase of elasticity respectively. Parenchymal elasticity increased linearly with elevation of urinary pressure. Intrarenal elasticity values vary with tissue anisotropy and, with vascular and urinary pressure levels. These parameters have to be taken into account for interpretation of tissue changes. Separation of outer and inner cortex could be attributable to perfusion differences. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Investigative Medicine
                Journal of Investigative Medicine
                Ovid Technologies (Wolters Kluwer Health)
                1081-5589
                2015
                April 2015
                : 63
                : 4
                : 605-612
                Article
                10.1097/JIM.0000000000000186
                5fed1e05-ebc7-43cf-9010-a1e95a75c5e7
                © 2015
                History

                Comments

                Comment on this article