24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear ( Pyrus bretschneideri Rehd.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The genome of the pear ( Pyrus bretschneideri Rehd.)

          The draft genome of the pear ( Pyrus bretschneideri ) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ∼28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ∼5.4–21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30–45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S -locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT , C3′H , and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid recent growth and divergence of rice nuclear genomes.

            By employing the nuclear DNA of the African rice Oryza glaberrima as a reference genome, the timing, natures, mechanisms, and specificities of recent sequence evolution in the indica and japonica subspecies of Oryza sativa were identified. The data indicate that the genome sizes of both indica and japonica have increased substantially, >2% and >6%, respectively, since their divergence from a common ancestor, mainly because of the amplification of LTR-retrotransposons. However, losses of all classes of DNA sequence through unequal homologous recombination and illegitimate recombination have attenuated the growth of the rice genome. Small deletions have been particularly frequent throughout the genome. In >1 Mb of orthologous regions that we analyzed, no cases of complete gene acquisition or loss from either indica or japonica were found, nor was any example of precise transposon excision detected. The sequences between genes were observed to have a very high rate of divergence, indicating a molecular clock for transposable elements that is at least 2-fold more rapid than synonymous base substitutions within genes. We found that regions prone to frequent insertions and deletions also exhibit higher levels of point mutation. These results indicate a highly dynamic rice genome with competing processes for the generation and removal of genetic variation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phylogeny and classification of Rosaceae

                Bookmark

                Author and article information

                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                gbe
                Genome Biology and Evolution
                Oxford University Press
                1759-6653
                June 2014
                4 June 2014
                4 June 2014
                : 6
                : 6
                : 1423-1436
                Affiliations
                1State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, China
                2Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
                Author notes
                *Corresponding author: E-mail: slzhang@ 123456njau.edu.cn .

                †These authors contributed equally to this work.

                Associate editor: Esther Betran

                Article
                evu114
                10.1093/gbe/evu114
                4079214
                24899073
                5ff3419e-4723-42de-bef1-d5dc26d45d30
                © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 21 May 2014
                Page count
                Pages: 14
                Categories
                Research Article

                Genetics
                cassandra retrotransposon,trim,amplification,recombination,pear,rosaceae
                Genetics
                cassandra retrotransposon, trim, amplification, recombination, pear, rosaceae

                Comments

                Comment on this article