18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phase-to-Phase With Nucleoli – Stress Responses, Protein Aggregation and Novel Roles of RNA

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein- and RNA-containing foci and aggregates are a hallmark of many age- and mutation-related neurodegenerative diseases. This article focuses on the role the nucleolus has as a hub in macromolecule regulation in the mammalian nucleus. The nucleolus has a well-established role in ribosome biogenesis and functions in several types of cellular stress responses. In addition to known reactions to DNA damaging and transcription inhibiting stresses, there is an emerging role of the nucleolus especially in responses to proteotoxic stress such as heat shock and inhibition of proteasome function. The nucleolus serves as an active regulatory site for detention of extranucleolar proteins. This takes place in nucleolar cavities and manifests in protein and RNA collections referred to as intranucleolar bodies (INBs), nucleolar aggresomes or amyloid bodies (A-bodies), depending on stress type, severity of accumulation, and material propensities of the macromolecular collections. These indicate a relevance of nucleolar function and regulation in neurodegeneration-related cellular events, but also provide surprising connections with cancer-related pathways. Yet, the molecular mechanisms governing these processes remain largely undefined. In this article, the nucleolus as the site of protein and RNA accumulation and as a possible protective organelle for nuclear proteins during stress is viewed. In addition, recent evidence of liquid-liquid phase separation (LLPS) and liquid-solid phase transition in the formation of nucleoli and its stress responses, respectively, are discussed, along with the increasingly indicated role and open questions for noncoding RNA species in these events.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The multifunctional nucleolus.

          The nucleolus is a distinct subnuclear compartment that was first observed more than 200 years ago. Nucleoli assemble around the tandemly repeated ribosomal DNA gene clusters and 28S, 18S and 5.8S ribosomal RNAs (rRNAs) are transcribed as a single precursor, which is processed and assembled with the 5S rRNA into ribosome subunits. Although the nucleolus is primarily associated with ribosome biogenesis, several lines of evidence now show that it has additional functions. Some of these functions, such as regulation of mitosis, cell-cycle progression and proliferation, many forms of stress response and biogenesis of multiple ribonucleoprotein particles, will be discussed, as will the relation of the nucleolus to human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Nucleolus under Stress

            Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In this review, we focus on how two nuclear organelles, the nucleolus and the Cajal body, respond to stress. The nucleolus senses stress and is a central hub for coordinating the stress response. We review nucleolar function in the stress-induced regulation of p53 and the specific changes in nucleolar morphology and composition that occur upon stress. Crosstalk between nucleoli and CBs is also discussed in the context of stress responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The DNA damage response: implications for tumor responses to radiation and chemotherapy.

              Cellular responses to DNA damage are important determinants of both cancer development and cancer outcome following radiation therapy and chemotherapy. Identification of molecular pathways governing DNA damage signaling and DNA repair in response to different types of DNA lesions allows for a better understanding of the effects of radiation and chemotherapy on normal and tumor cells. Although dysregulation of the DNA damage response (DDR) is associated with predisposition to cancer development, it can also result in hypersensitivity or resistance of tumors to therapy and can be exploited for improvement of cancer treatment. We highlight the DDR pathways that are activated after treatment with radiation and different classes of chemotherapeutic drugs and describe mechanisms determining tumor sensitivity and resistance to these agents. Further, we discuss approaches to enhance tumor sensitivity to radiation and chemotherapy by modulating the DDR with a goal of enhancing the effectiveness of cancer therapies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                26 April 2019
                2019
                : 13
                : 151
                Affiliations
                Institute of Biomedicine, University of Eastern Finland , Kuopio, Finland
                Author notes

                Edited by: Rosanna Parlato, University of Ulm, Germany

                Reviewed by: Stephen Lee, University of Miami, United States; Miguel Lafarga, University of Cantabria-IDIVAL, Spain

                *Correspondence: Leena Latonen, leena.latonen@ 123456uef.fi

                This article was submitted to Cellular Neuropathology, a section of the journal Frontiers in Cellular Neuroscience

                Article
                10.3389/fncel.2019.00151
                6497782
                31080406
                5ff496d9-fca7-4ef2-aefa-a0f052e5abf4
                Copyright © 2019 Latonen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 January 2019
                : 08 April 2019
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 102, Pages: 10, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                nucleoli,stress responses,protein aggregation,amyloidosis,proteasome inhibition,non-coding rna

                Comments

                Comment on this article