11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Planet Formation in the Outer Solar System

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper reviews coagulation models for planet formation in the Kuiper Belt, emphasizing links to recent observations of our and other solar systems. At heliocentric distances of 35-50 AU, single annulus and multiannulus planetesimal accretion calculations produce several 1000 km or larger planets and many 50-500 km objects on timescales of 10-30 Myr in a Minimum Mass Solar Nebula. Planets form more rapidly in more massive nebulae. All models yield two power law cumulative size distributions, N_C propto r^{-q} with q = 3.0-3.5 for radii larger than 10 km and N_C propto r^{-2.5} for radii less than 1 km. These size distributions are consistent with observations of Kuiper Belt objects acquired during the past decade. Once large objects form at 35-50 AU, gravitational stirring leads to a collisional cascade where 0.1-10 km objects are ground to dust. The collisional cascade removes 80% to 90% of the initial mass in the nebula in roughly 1 Gyr. This dust production rate is comparable to rates inferred for alpha Lyr, beta Pic, and other extrasolar debris disk systems.

          Related collections

          Author and article information

          Journal
          05 December 2001
          Article
          10.1086/339188
          astro-ph/0112120
          5ffafbb7-7ba3-4ec0-9d07-0ed78123091f
          History
          Custom metadata
          invited review for PASP, March 2002. 33 pages of text and 12 figures
          astro-ph

          Comments

          Comment on this article