14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others ( P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well fitted into the Higuchi and zero-order models, respectively.

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Particle size analysis in pharmaceutics: principles, methods and applications.

          Physicochemical and biopharmaceutical properties of drug substances and dosage forms can be highly affected by the particle size, a critical process parameter in pharmaceutical production. The fundamental issue with particle size analysis is the variety of equivalent particle diameters generated by different methods, which is largely ascribable to the particle shape and particle dispersion mechanism involved. Thus, to enable selection of the most appropriate or optimal sizing technique, cross-correlation between different techniques may be required. This review offers an in-depth discussion on particle size analysis pertaining to specific pharmaceutical applications and regulatory aspects, fundamental principles and terminology, instrumentation types, data presentation and interpretation, in-line and process analytical technology. For illustration purposes, special consideration is given to the analysis of aerosols using time-of-flight and cascade impactor measurements, which is supported by a computational analysis conducted for this review.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Formation, characterization, and fate of inhaled drug nanoparticles.

            Nanoparticles bring many benefits to pulmonary drug delivery applications, especially for systemic delivery and drugs with poor solubility. They have recently been explored in pressurized metered dose inhaler, nebulizer, and dry powder inhaler applications, mostly in polymeric forms. This article presents a review of processes that have been used to generate pure (non polymeric) drug nanoparticles, methods for characterizing the particles/formulations, their in-vitro and in-vivo performances, and the fate of inhaled nanoparticles. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel method for assessing dissolution of aerosol inhaler products.

              Glucocorticoids administered by inhalation remain a first-line treatment of patients with asthma allergic rhinitis and advanced chronic obstructive pulmonary disease. Budesonide (BD), fluticasone propionate (FP) and triamcinolone acetonide (TA) have high hepatic first-pass inactivation of the swallowed fraction of the inhaled dose, whereas there is no first-pass metabolism in the lung. Hence, the lung bioavailability will determine the overall systemic absorption and the systemic bioactivity. Efficacy of inhaled agents in the respiratory tract depends on the site of deposition and physicochemical properties of the drug, which dictates rate of dissolution, absorption, metabolism and elimination. However, to date no official method exists for testing dissolution rates from inhalation aerosols. An in vitro flow through dissolution method may be useful to provide information on rate of release and determine formulation differences between products or in product development. After administration of three glucocorticoids into a cascade impactor they underwent dissolution in a flow through cell utilising water, simulated lung fluid (SLF) and modified SLF with L-alpha-phosphatidylcholine (DPPC) as a dissolution medium, at constant flow and temperature. Modified SLF significantly increased the dissolution rate compared with SLF alone. This novel technique appears to be a useful method of evaluating dissolution of these glucocorticoids and may also be applied to other respiratory products administered via aerosols.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2016
                13 December 2016
                : 10
                : 4017-4030
                Affiliations
                [1 ]College of Pharmacy, Chungbuk National University
                [2 ]Department of Pharmaceutical Engineering, Cheongju University, Cheongju
                [3 ]College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju
                [4 ]College of Pharmacy, Woosuk University, Wanju-gun
                [5 ]School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
                Author notes
                Correspondence: Chun-Woong Parkm, College of Pharmacy, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungcheongbuk-do 28160, Republic of Korea, Tel +82 43 261 3330, Fax +82 43 268 2732, Email cwpark@ 123456cbnu.ac.kr
                Eun-Seok Park, School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea, Tel +82 31 290 7729, Fax +82 31 290 7729, Email espark@ 123456skku.edu
                Article
                dddt-10-4017
                10.2147/DDDT.S120356
                5167478
                © 2016 Lee et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article