1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Visual Tracker Offering More Solutions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most trackers focus solely on robustness and accuracy. Visual tracking, however, is a long-term problem with a high time limitation. A tracker that is robust, accurate, with long-term sustainability and real-time processing, is of high research value and practical significance. In this paper, we comprehensively consider these requirements in order to propose a new, state-of-the-art tracker with an excellent performance. EfficientNet-B0 is adopted for the first time via neural architecture search technology as the backbone network for the tracking task. This improves the network feature extraction ability and significantly reduces the number of parameters required for the tracker backbone network. In addition, maximal Distance Intersection-over-Union is set as the target estimation method, enhancing network stability and increasing the offline training convergence rate. Channel and spatial dual attention mechanisms are employed in the target classification module to improve the discrimination of the trackers. Furthermore, the conjugate gradient optimization strategy increases the speed of the online learning target classification module. A two-stage search method combined with a screening module is proposed to enable the tracker to cope with sudden target movement and reappearance following a brief disappearance. Our proposed method has an obvious speed advantage compared with pure global searching and achieves an optimal performance on OTB2015, VOT2016, VOT2018-LT, UAV-123 and LaSOT while running at over 50 FPS.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Object Tracking Benchmark.

          Object tracking has been one of the most important and active research areas in the field of computer vision. A large number of tracking algorithms have been proposed in recent years with demonstrated success. However, the set of sequences used for evaluation is often not sufficient or is sometimes biased for certain types of algorithms. Many datasets do not have common ground-truth object positions or extents, and this makes comparisons among the reported quantitative results difficult. In addition, the initial conditions or parameters of the evaluated tracking algorithms are not the same, and thus, the quantitative results reported in literature are incomparable or sometimes contradictory. To address these issues, we carry out an extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria to understand how these methods perform within the same framework. In this work, we first construct a large dataset with ground-truth object positions and extents for tracking and introduce the sequence attributes for the performance analysis. Second, we integrate most of the publicly available trackers into one code library with uniform input and output formats to facilitate large-scale performance evaluation. Third, we extensively evaluate the performance of 31 algorithms on 100 sequences with different initialization settings. By analyzing the quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-Speed Tracking with Kernelized Correlation Filters

            The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled sample patches. Such sets of samples are riddled with redundancies-any overlapping pixels are constrained to be the same. Based on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting data matrix is circulant, we can diagonalize it with the discrete Fourier transform, reducing both storage and computation by several orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest competitive trackers. For kernel regression, however, we derive a new kernelized correlation filter (KCF), that unlike other kernel algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of linear correlation filters, via a linear kernel, which we call dual correlation filter (DCF). Both KCF and DCF outperform top-ranking trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Delving deep into rectifiers: surpassing human-level performance on imagenet classification

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                19 September 2020
                September 2020
                : 20
                : 18
                : 5374
                Affiliations
                [1 ]College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China; zhaolong@ 123456nefu.edu.cn (L.Z.); mubarakcom@ 123456nefu.edu.cn (M.A.I.M.); zhum913@ 123456163.com (M.Z.)
                [2 ]Big Data Institute, East University of Heilongjiang, Harbin 150066, China
                [3 ]Forestry Intelligent Equipment Engineering Research Center, Harbin 150040, China
                Author notes
                [* ]Correspondence: nefu_rhe@ 123456163.com ; Tel.: +86-0451-6680-5518
                Author information
                https://orcid.org/0000-0002-6271-5576
                Article
                sensors-20-05374
                10.3390/s20185374
                7570860
                32961752
                6010ba3e-643b-4549-ae34-6584e7de600b
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 August 2020
                : 16 September 2020
                Categories
                Article

                Biomedical engineering
                visual tracking,neural architecture search,dual attention mechanisms,two-stage search

                Comments

                Comment on this article