49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Matrix metalloproteinases: old dogs with new tricks

      review-article
      1 , 1 , 1 ,
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It was previously thought that the matrix metalloproteinase family acted only to degrade components of the extracellular matrix, but this view has changed with the discovery that non-extracellular-matrix molecules are also substrates.

          Abstract

          The matrix metalloproteinase family in humans comprises 23 enzymes, which are involved in many biological processes and diseases. It was previously thought that these enzymes acted only to degrade components of the extracellular matrix, but this view has changed with the discovery that non-extracellular-matrix molecules are also substrates.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          How matrix metalloproteinases regulate cell behavior.

          The matrix metalloproteinases (MMPs) constitute a multigene family of over 25 secreted and cell surface enzymes that process or degrade numerous pericellular substrates. Their targets include other proteinases, proteinase inhibitors, clotting factors, chemotactic molecules, latent growth factors, growth factor-binding proteins, cell surface receptors, cell-cell adhesion molecules, and virtually all structural extracellular matrix proteins. Thus MMPs are able to regulate many biologic processes and are closely regulated themselves. We review recent advances that help to explain how MMPs work, how they are controlled, and how they influence biologic behavior. These advances shed light on how the structure and function of the MMPs are related and on how their transcription, secretion, activation, inhibition, localization, and clearance are controlled. MMPs participate in numerous normal and abnormal processes, and there are new insights into the key substrates and mechanisms responsible for regulating some of these processes in vivo. Our knowledge in the field of MMP biology is rapidly expanding, yet we still do not fully understand how these enzymes regulate most processes of development, homeostasis, and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.

            Stem cells within the bone marrow (BM) exist in a quiescent state or are instructed to differentiate and mobilize to circulation following specific signals. Matrix metalloproteinase-9 (MMP-9), induced in BM cells, releases soluble Kit-ligand (sKitL), permitting the transfer of endothelial and hematopoietic stem cells (HSCs) from the quiescent to proliferative niche. BM ablation induces SDF-1, which upregulates MMP-9 expression, and causes shedding of sKitL and recruitment of c-Kit+ stem/progenitors. In MMP-9-/- mice, release of sKitL and HSC motility are impaired, resulting in failure of hematopoietic recovery and increased mortality, while exogenous sKitL restores hematopoiesis and survival after BM ablation. Release of sKitL by MMP-9 enables BM repopulating cells to translocate to a permissive vascular niche favoring differentiation and reconstitution of the stem/progenitor cell pool.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A matrix metalloproteinase expressed on the surface of invasive tumour cells.

              Gelatinase A (type-IV collagenase; M(r) 72,000) is produced by tumour stroma cells and is believed to be crucial for their invasion and metastasis, acting by degrading extracellular matrix macro-molecules such as type IV collagen. An inactive precursor of gelatinase A (pro-gelatinase A) is secreted and activated in invasive tumour tissue as a result of proteolysis which is mediated by a fraction of tumour cell membrane that is sensitive to metalloproteinase inhibitors. Here we report the cloning of the complementary DNA encoding a new matrix metalloproteinase with a potential transmembrane domain. Expression of the gene product on the cell surface induces specific activation of pro-gelatinase A in vitro and enhances cellular invasion of the reconstituted basement membrane. Tumour cells of invasive lung carcinomas, which contain activated forms of gelatinase A, were found to express the transcript and the gene product. The new metalloproteinase may thus trigger invasion by tumour cells by activating pro-gelatinase A on the tumour cell surface.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1465-6906
                1465-6914
                2003
                29 May 2003
                : 4
                : 6
                : 216
                Affiliations
                [1 ]Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
                Article
                gb-2003-4-6-216
                10.1186/gb-2003-4-6-216
                193609
                12801404
                60116d2f-c9da-4849-8273-83bc03948077
                Copyright © 2003 BioMed Central Ltd
                History
                Categories
                Review

                Genetics
                Genetics

                Comments

                Comment on this article