22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Capsule Type and Amount Affect Shedding and Transmission of Streptococcus pneumoniae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          The capsular polysaccharide (CPS) of Streptococcus pneumoniae is characterized by its diversity, as it has over 95 known serotypes, and the variation in its thickness as it surrounds an organism. While within-host effects of CPS have been studied in detail, there is no information about its contribution to host-to-host transmission. In this study, we used an infant mouse model of intralitter transmission, together with isogenic capsule switch and cps promoter switch constructs, to explore the effects of CPS type and amount. The determining factor in the transmission rate in this model is the number of pneumococci shed in nasal secretions by colonized hosts. Two of seven capsule switch constructs showed reduced shedding. These constructs were unimpaired in colonization and expressed capsules similar in size to those of the wild-type strain. A cps promoter switch mutant expressing ~50% of wild-type amounts of CPS also displayed reduced shedding without a defect in colonization. Since shedding from the mucosal surface may require escape from mucus entrapment, a mucin-binding assay was used to compare capsule switch and cps promoter switch mutants. The CPS type or amount constructs that shed poorly were bound more robustly by immobilized mucin. These capsule switch and cps promoter switch constructs with increased mucin-binding affinity and reduced shedding also had lower rates of pup-to-pup transmission. Our results demonstrate that CPS type and amount affect transmission dynamics and may contribute to the marked differences in prevalence among pneumococcal types.

          IMPORTANCE

          Streptococcus pneumoniae, a leading cause of morbidity and mortality, is readily transmitted, especially among young children. Its structurally and antigenically diverse capsular polysaccharide is the target of currently licensed pneumococcal vaccines. Epidemiology studies show that only a subset of the >95 distinct serotypes are prevalent in the human population, suggesting that certain capsular polysaccharide types might be more likely to be transmitted within the community. Herein, we used an infant mouse model to show that both capsule type and amount are important determinants in the spread of pneumococci from host to host. Transmission rates correlate with those capsule types that are better at escaping mucus entrapment, a key step in exiting the host upper respiratory tract. Hence, our study provides a better mechanistic understanding of why certain pneumococcal serotypes are more common in the human population.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: not found
          • Article: not found

          Airway mucus function and dysfunction.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study.

            The seven-valent pneumococcal conjugate vaccine (PCV7) has reduced vaccine-type (VT) invasive pneumococcal disease but increases in non-vaccine-type (NVT) disease have varied between countries. We assess the effect of the PCV7 vaccination on VT and NVT disease in England and Wales. The study cohort was the population of England and Wales from July, 2000, to June, 2010. We calculated incidence rate ratios (IRRs) to compare incidences of VT and NVT disease before (2000-06) and after (2009-10) the introduction of PCV7. We used data from the national surveillance database. Cases included in our analysis were restricted to those confirmed by culture linked with isolates referred for serotyping at the national reference centre by laboratories in England and Wales. We adjusted for potential bias from missing data (serotype and age of patient) and changes in case ascertainment rates during the study period. 5809 cases of invasive pneumococcal disease were reported in 2009-10, giving an incidence of 10·6 per 100,000 population in 2009-10, which, when compared with the adjusted average annual incidence of 16·1 in 2000-06, gives an overall reduction of 34% (95% CI 28-39). VT disease decreased in all age groups, with reductions of 98% in individuals younger than 2 years and 81% in those aged 65 years or older. NVT disease increased by 68% in individuals younger than 2 years and 48% in those aged 65 years or older, giving an overall reduction in invasive pneumococcal disease of 56% in those younger than 2 years and 19% in those aged 65 years or older. After vaccine introduction, more NVT serotypes increased in frequency than decreased, which is consistent with vaccine-induced replacement. Key serotypes showing replacement were 7F, 19A, and 22F. Increases in NVT invasive pneumococcal disease were not associated with antimicrobial resistance. Despite much serotype replacement, a substantial reduction in invasive pneumococcal disease in young children can be achieved with PCV7 vaccination, with some indirect benefit in older age groups. Further reductions should be achievable by use of higher valency vaccines. Robust surveillance data are needed to properly assess the epidemiological effect of multivalent pneumococcal disease vaccines. Health Protection Agency. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mucins, mucus, and sputum.

              Normal airway mucus lines the epithelial surface and provides an important innate immune function by detoxifying noxious molecules and by trapping and removing pathogens and particulates from the airway via mucociliary clearance. The major macromolecular constituents of normal mucus, the mucin glycoproteins, are large, heavily glycosylated proteins with a defining feature of tandemly repeating sequences of amino acids rich in serine and threonine, the linkage sites for large carbohydrate structures. The mucins are composed of two major families: secreted mucins and membrane-associated mucins. Membrane-associated mucins have been reported to function as cell surface receptors for pathogens and to activate intracellular signaling pathways. The biochemical and cellular functions for secreted mucin glycoproteins have not been definitively assigned. In contrast to normal mucus, sputum production is the hallmark of chronic inflammatory airway diseases such as asthma, chronic bronchitis, and cystic fibrosis (CF). Sputum has altered macromolecular composition and biophysical properties which vary with disease, but unifying features are failure of mucociliary clearance, resulting in airway obstruction, and failure of innate immune properties. Mucin glycoprotein overproduction and hypersecretion are common features of chronic inflammatory airway disease, and this has been the underlying rationale to investigate the mechanisms of mucin gene regulation and mucin secretion. However, in some pathologic conditions such as CF, airway sputum contains little intact mucin and has increased content of several macromolecules including DNA, filamentous actin, lipids, and proteoglycans. This review will highlight the most recent insights on mucus biology in health and disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                22 August 2017
                Jul-Aug 2017
                : 8
                : 4
                : e00989-17
                Affiliations
                [a ]Department of Microbiology, New York University School of Medicine, New York, New York, USA
                [b ]Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, USA
                Mississippi State University
                Author notes
                Address correspondence to Jeffrey N. Weiser, jeffrey.weiser@ 123456nyumc.org .
                Author information
                http://orcid.org/0000-0002-3737-0422
                Article
                mBio00989-17
                10.1128/mBio.00989-17
                5565965
                28830943
                6016ef5d-935c-4943-b1e5-56906991e6d3
                Copyright © 2017 Zafar et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 8 June 2017
                : 19 July 2017
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 54, Pages: 12, Words: 7791
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) https://doi.org/10.13039/100000060
                Award ID: AI038446
                Award ID: AI105168
                Award Recipient : Jeffrey N. Weiser
                Categories
                Research Article
                Custom metadata
                July/August 2017

                Life sciences
                streptococcus pneumoniae,transmission,bacterial shedding,capsular polysaccharide,host-pathogen interactions,influenza a,pneumococcus

                Comments

                Comment on this article