32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Communities of Surface Mixed Layer in the Pacific Sector of the Western Arctic Ocean during Sea-Ice Melting

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity and biogeography of soil bacterial communities.

          For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH (r(2) = 0.70 and r(2) = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of "macro" organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SAR11 clade dominates ocean surface bacterioplankton communities.

            The most abundant class of bacterial ribosomal RNA genes detected in seawater DNA by gene cloning belongs to SAR11-an alpha-proteobacterial clade. Other than indications of their prevalence in seawater, little is known about these organisms. Here we report quantitative measurements of the cellular abundance of the SAR11 clade in northwestern Sargasso Sea waters to 3,000 m and in Oregon coastal surface waters. On average, the SAR11 clade accounts for a third of the cells present in surface waters and nearly a fifth of the cells present in the mesopelagic zone. In some regions, members of the SAR11 clade represent as much as 50% of the total surface microbial community and 25% of the subeuphotic microbial community. By extrapolation, we estimate that globally there are 2.4 x 10(28) SAR11 cells in the oceans, half of which are located in the euphotic zone. Although the biogeochemical role of the SAR11 clade remains uncertain, these data support the conclusion that this microbial group is among the most successful organisms on Earth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A major ecosystem shift in the northern Bering Sea.

              Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production. Here, we show that these ecosystems are shifting away from these characteristics. Changes in biological communities are contemporaneous with shifts in regional atmospheric and hydrographic forcing. In the past decade, geographic displacement of marine mammal population distributions has coincided with a reduction of benthic prey populations, an increase in pelagic fish, a reduction in sea ice, and an increase in air and ocean temperatures. These changes now observed on the shallow shelf of the northern Bering Sea should be expected to affect a much broader portion of the Pacific-influenced sector of the Arctic Ocean.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                31 January 2014
                : 9
                : 1
                : e86887
                Affiliations
                [1 ]Korea Polar Research Institute, KIOST, Incheon, Republic of Korea
                [2 ]School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
                [3 ]Division of Biology and Ocean Sciences, Inha University, Incheon, Republic of Korea
                Stazione Zoologica, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DH. Performed the experiments: DH. Analyzed the data: DH IK HKH HCK. Contributed reagents/materials/analysis tools: OSK BYL JCC HGH YKL. Wrote the paper: DH IK HKH YKL.

                Article
                PONE-D-13-23795
                10.1371/journal.pone.0086887
                3908934
                24497990
                601ea354-c38e-49dc-b427-4038cf4ef5cf
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 7 June 2013
                : 16 December 2013
                Page count
                Pages: 12
                Funding
                This research was supported by a grant from the Korea Polar Research Institute (KOPRI; http://www.kopri.re.kr) as K-Polar projects (PP10090; PP11020; PM11050). This study was also supported by the Polar Academic Program (PD12010) of the KOPRI, Gwanju Institute of Science and Technology and Inha University, Korea, 2012. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Sequence Analysis
                Ecology
                Community Ecology
                Community Assembly
                Community Structure
                Species Interactions
                Ecological Environments
                Marine Environments
                Biodiversity
                Biogeography
                Microbial Ecology
                Population Ecology
                Marine Biology
                Marine Ecology
                Marine Monitoring
                Microbiology
                Microbial Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article