19
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Breast Cancer Stem Cell-Selective, Mammospheres-Potent Osmium(VI) Nitrido Complex

      rapid-communication

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effect of a newly developed osmium(VI) nitrido complex, 1, on breast cancer stem cells (CSCs) is reported. The complex displays selective toxicity for HMLER breast cancer cells enriched with CD44-positive, CSC-like cells over the same cells having reduced CSC character. Remarkably, 1 also reduces the proportion of CSCs within a heterogeneous breast cancer cell population and irreversibly inhibits the formation of free-floating mammospheres to an extent similar to that of salinomycin, a natural product that targets CSCs. Detailed mechanistic studies reveal that in breast cancer cells 1 induces DNA damage and endoplasmic reticulum stress, the latter being responsible for the CSC selectivity. The anti-CSC properties of 1 provide a strong impetus for the development of new metal-based compounds to target CSCs and to treat chemotherapy-resistant and relapsed tumors.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of selective inhibitors of cancer stem cells by high-throughput screening.

          Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy

            Introduction The phenotypic and functional differences between cells that initiate human breast tumors (cancer stem cells) and those that comprise the tumor bulk are difficult to study using only primary tumor tissue. We embarked on this study hypothesizing that breast cancer cell lines would contain analogous hierarchical differentiation programs to those found in primary breast tumors. Methods Eight human breast cell lines (human mammary epithelial cells, and MCF10A, MCF7, SUM149, SUM159, SUM1315 and MDA.MB.231 cells) were analyzed using flow cytometry for CD44, CD24, and epithelial-specific antigen (ESA) expression. Limiting dilution orthotopic injections were used to evaluate tumor initiation, while serial colony-forming unit, reconstitution and tumorsphere assays were performed to assess self-renewal and differentiation. Pulse-chase bromodeoxyuridine (5-bromo-2-deoxyuridine [BrdU]) labeling was used to examine cell cycle and label-retention of cancer stem cells. Cells were treated with paclitaxol and 5-fluorouracil to test selective resistance to chemotherapy, and gene expression profile after chemotherapy were examined. Results The percentage of CD44+/CD24- cells within cell lines does not correlate with tumorigenicity, but as few as 100 cells can form tumors when sorted for CD44+/CD24-/low/ESA+. Furthermore, CD44+/CD24-/ESA+ cells can self-renew, reconstitute the parental cell line, retain BrdU label, and preferentially survive chemotherapy. Conclusion These data validate the use of cancer cell lines as models for the development and testing of novel therapeutics aimed at eradicating cancer stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells.

              A number of genetic mutations have been identified in human breast cancers, yet the specific combinations of mutations required in concert to form breast carcinoma cells remain unknown. One approach to identifying the genetic and biochemical alterations required for this process involves the transformation of primary human mammary epithelial cells (HMECs) to carcinoma cells through the introduction of specific genes. Here we show that introduction of three genes encoding the SV40 large-T antigen, the telomerase catalytic subunit, and an H-Ras oncoprotein into primary HMECs results in cells that form tumors when transplanted subcutaneously or into the mammary glands of immunocompromised mice. The tumorigenicity of these transformed cells was dependent on the level of ras oncogene expression. Interestingly, transformation of HMECs but not two other human cell types was associated with amplifications of the c-myc oncogene, which occurred during the in vitro growth of the cells. Tumors derived from the transformed HMECs were poorly differentiated carcinomas that infiltrated through adjacent tissue. When these cells were injected subcutaneously, tumors formed in only half of the injections and with an average latency of 7.5 weeks. Mixing the epithelial tumor cells with Matrigel or primary human mammary fibroblasts substantially increased the efficiency of tumor formation and decreased the latency of tumor formation, demonstrating a significant influence of the stromal microenvironment on tumorigenicity. Thus, these observations establish an experimental system for elucidating both the genetic and cell biological requirements for the development of breast cancer.
                Bookmark

                Author and article information

                Journal
                J Am Chem Soc
                J. Am. Chem. Soc
                ja
                jacsat
                Journal of the American Chemical Society
                American Chemical Society
                0002-7863
                1520-5126
                23 September 2015
                23 September 2014
                15 October 2014
                : 136
                : 41
                : 14413-14416
                Affiliations
                [10] Department of Chemistry and The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
                Author notes
                Article
                10.1021/ja508808v
                4210142
                25247635
                6021f333-ede2-422a-8c0e-04e67203ae50
                Copyright © 2014 American Chemical Society
                History
                : 26 August 2014
                Funding
                National Institutes of Health, United States
                Categories
                Communication
                Custom metadata
                ja508808v
                ja-2014-08808v

                Chemistry
                Chemistry

                Comments

                Comment on this article