19
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comparison of DigiGait™ and TreadScan™ imaging systems: assessment of pain using gait analysis in murine monoarthritis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Carrageenan-induced arthritis is a painful acute arthritis model that is simple to induce, with peak pain and inflammation occurring at about 3 hours. This arthritis model can be evaluated using semiquantitative evoked or non-evoked pain scoring systems. These measures are subjective and are often time- and labor-intensive. It would be beneficial to utilize quantitative, nonsubjective evaluations of pain with rapid assessment tools. We sought to compare the DigiGait™ and TreadScan™ systems and to validate the two gait analysis platforms for detection of carrageenan-induced monoarthritis pain and analgesic response through changes in gait behavior.

          Methods

          Non-arthritic mice and carrageenan-induced arthritic mice with and without analgesia were examined. A painful arthritic knee was produced by injection of 3% carrageenan into the knee joint of adult mice. Analgesic-treated mice were injected subcutaneously with 0.015 mg/mL (0.5 mg/kg) buprenorphine. Five-second videos were captured on the DigiGait™ or TreadScan™ system and, after calculating gait parameters, were compared using student’s unpaired t-test.

          Results

          We found the DigiGait™ system consistently measured significantly longer stride measures (swing time, stance time, and stride time) than did TreadScan™. Both systems’ measures of variability were equal. Reproducibility was inconsistent on both systems. While both systems detected alterations in some gait measures after carrageenan injection, none of the alterations were seen with both systems. Only the TreadScan™ detected normalization of gait measures after analgesia, but the system could not detect normalization across all measures that altered due to arthritis pain. Time spent on analysis was dependent on operator experience.

          Conclusion

          Neither the DigiGait™ nor TreadScan™ system was useful for measuring changes in pain behaviors or analgesic responses in acute inflammatory monoarthritic mice.

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments.

          It is not known whether changes in the biomechanics of elderly gait are related to aging per se, or to reduced walking speed in this population. The goals of the present study were to identify specific biomechanical changes, independent of speed, that might impair gait performance in healthy older people by identifying age-associated changes in the biomechanics of gait, and to determine which of these changes persist at increased walking speed. Stereophotogrammetric and force platform data were collected. Differences in peak joint motion (kinematic) and joint moment and power (kinetic) values between healthy young and elderly subjects at comfortable and increased walking speed were measured. A gait laboratory. Thirty-one healthy elderly (age 65 to 84 years) and 31 healthy young adult subjects (age 18 to 36 years), all without known neurologic, musculoskeletal, cardiac, or pulmonary problems. All major peak kinematic and kinetic variables during the gait cycle. Several kinematic and kinetic differences between young and elderly adults were found that did not persist when walking speed was increased. Differences that persisted at both comfortable and fast walking speeds were reduced peak hip extension, increased anterior pelvic tilt, and reduced ankle plantarflexion and ankle power generation. Gait performance in the elderly may be limited by both subtle hip flexion contracture and ankle plantarflexor concentric weakness. Results of the current study should motivate future experimental trials of specific hip flexor stretching and ankle plantarflexor concentric strengthening exercises to preserve and potentially improve walking performance in the elderly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence of novel color vision in mice engineered to express a human cone photopigment.

            Changes in the genes encoding sensory receptor proteins are an essential step in the evolution of new sensory capacities. In primates, trichromatic color vision evolved after changes in X chromosome-linked photopigment genes. To model this process, we studied knock-in mice that expressed a human long-wavelength-sensitive (L) cone photopigment in the form of an X-linked polymorphism. Behavioral tests demonstrated that heterozygous females, whose retinas contained both native mouse pigments and human L pigment, showed enhanced long-wavelength sensitivity and acquired a new capacity for chromatic discrimination. An inherent plasticity in the mammalian visual system thus permits the emergence of a new dimension of sensory experience based solely on gene-driven changes in receptor organization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Gait dynamics in mouse models of Parkinson's disease and Huntington's disease

              Background Gait is impaired in patients with Parkinson's disease (PD) and Huntington's disease (HD), but gait dynamics in mouse models of PD and HD have not been described. Here we quantified temporal and spatial indices of gait dynamics in a mouse model of PD and a mouse model of HD. Methods Gait indices were obtained in C57BL/6J mice treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day for 3 days) for PD, the mitochondrial toxin 3-nitropropionic acid (3NP, 75 mg/kg cumulative dose) for HD, or saline. We applied ventral plane videography to generate digital paw prints from which indices of gait and gait variability were determined. Mice walked on a transparent treadmill belt at a speed of 34 cm/s after treatments. Results Stride length was significantly shorter in MPTP-treated mice (6.6 ± 0.1 cm vs. 7.1 ± 0.1 cm, P < 0.05) and stride frequency was significantly increased (5.4 ± 0.1 Hz vs. 5.0 ± 0.1 Hz, P < 0.05) after 3 administrations of MPTP, compared to saline-treated mice. The inability of some mice treated with 3NP to exhibit coordinated gait was due to hind limb failure while forelimb gait dynamics remained intact. Stride-to-stride variability was significantly increased in MPTP-treated and 3NP-treated mice compared to saline-treated mice. To determine if gait disturbances due to MPTP and 3NP, drugs affecting the basal ganglia, were comparable to gait disturbances associated with motor neuron diseases, we also studied gait dynamics in a mouse model of amyotrophic lateral sclerosis (ALS). Gait variability was not increased in the SOD1 G93A transgenic model of ALS compared to wild-type control mice. Conclusion The distinct characteristics of gait and gait variability in the MPTP model of Parkinson's disease and the 3NP model of Huntington's disease may reflect impairment of specific neural pathways involved.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2014
                24 December 2013
                : 7
                : 25-35
                Affiliations
                [1 ]Department of Research, Minneapolis, MN, USA
                [2 ]Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
                [3 ]Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
                Author notes
                Correspondence: Hollis E Krug, 1 Veterans Drive, Rheumatology (111R), Minneapolis, MN 55417 USA, Tel +1 612 467 4190, Fax +1 612 467 2267, Email hollis.krug@ 123456va.gov
                Article
                jpr-7-025
                10.2147/JPR.S52195
                3883276
                24516338
                602a2048-b89c-4562-b8b5-fe52a133f15f
                © 2014 Dorman et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution — Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Anesthesiology & Pain management
                arthritis,mouse,video
                Anesthesiology & Pain management
                arthritis, mouse, video

                Comments

                Comment on this article