34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (p<0.05) by the increasing supplementation of the dietary GABA-producer. Shape index, eggshell thickness, strength and weight were increased linearly with increasing GABA-producer supplementation. The level of calcium, phosphorus, glucose, total protein and albumin in serum of the hens fed GABA-producing strain supplemented diet was significantly higher (p<0.05) than that of the hens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin.

          Heat stress is detrimental to dairy production and affects numerous variables including feed intake and milk production. It is unclear, however, whether decreased milk yield is primarily due to the associated reduction in feed intake or the cumulative effects of heat stress on feed intake, metabolism, and physiology of dairy cattle. To distinguish between direct (not mediated by feed intake) and indirect (mediated by feed intake) effects of heat stress on physiological and metabolic indices, Holstein cows (n = 6) housed in thermal neutral conditions were pair-fed (PF) to match the nutrient intake of heat-stressed cows (HS; n = 6). All cows were subjected to 2 experimental periods: 1) thermal neutral and ad libitum intake for 9 d (P1) and 2) HS or PF for 9 d (P2). Heat-stress conditions were cyclical with daily temperatures ranging from 29.7 to 39.2 degrees C. During P1 and P2 all cows received i.v. challenges of epinephrine (d 6 of each period), and growth hormone releasing factor (GRF; d 7 of each period), and had circulating somatotropin (ST) profiles characterized (every 15 min for 6 h on d 8 of each period). During P2, HS cows were hyperthermic for the entire day and peak differences in rectal temperatures and respiration rates occurred in the afternoon (38.7 to 40.2 degrees C and 46 to 82 breaths/min, respectively). Heat stress decreased dry matter intake by greater than 35% and, by design, PF cows had similar reduced intakes. Heat stress and PF decreased milk yield, although the pattern and magnitude (40 and 21%, respectively) differed between treatments. The reduction in dry matter intake caused by HS accounted for only approximately 35% of the decrease in milk production. Both HS and PF cows entered into negative energy balance, but only PF cows had increased (approximately 120%) basal nonesterified fatty acid (NEFA) concentrations. Both PF and HS cows had decreased (7%) plasma glucose levels. The NEFA response to epinephrine did not differ between treatments but was increased (greater than 50%) in all cows during P2. During P2, HS (but not PF) cows had a modest reduction (16%) in plasma insulin-like growth factor-I. Neither treatment nor period had an effect on the ST response to GRF and there was little or no treatment effect on mean ST levels or pulsatility characteristics, but both HS and PF cows had reduced mean ST concentrations during P2. In summary, reduced nutrient intake accounted for just 35% of the HS-induced decrease in milk yield, and modest changes in the somatotropic axis may have contributed to a portion of the remainder. Differences in basal NEFA between PF and HS cows suggest a shift in postabsorptive metabolism and nutrient partitioning that may explain the additional reduction in milk yield in cows experiencing a thermal load.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nutrient Requirements of Poultry

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods

                Bookmark

                Author and article information

                Journal
                Asian-Australas J Anim Sci
                Asian-australas. J. Anim. Sci
                Asian-Australasian Journal of Animal Sciences
                Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST)
                1011-2367
                1976-5517
                July 2015
                : 28
                : 7
                : 1006-1013
                Affiliations
                [1 ]College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China
                [2 ]Jiangsu Unison Biotechnology Development Co., Ltd., Suqian 233100, China.
                [3 ]Ministry of Agriculture Feed Industry Centre, China Agricultural Univeristy, Beijing 100193, China.
                Author notes
                [* ]Corresponding Author: Y. Z. Zhu. Tel: +86-13615509988, Fax: +86-05506732040, E-mail: zhuyuanzhao111@ 123456163.com
                Article
                ajas-28-7-1006
                10.5713/ajas.15.0119
                4478492
                26104406
                6030979f-ed8b-466a-bfc7-ad4515c13513
                Copyright © 2015 by Asian-Australasian Journal of Animal Sciences
                History
                : 11 February 2015
                : 27 March 2015
                : 25 April 2015
                Categories
                Article

                γ-aminobutyric acid,lactobacillus,heat stress,laying performance,egg quality

                Comments

                Comment on this article