6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Subnational mapping of under-5 and neonatal mortality trends in India: the Global Burden of Disease Study 2000–17

      research-article
      India State-Level Disease Burden Initiative Child Mortality Collaborators
      Lancet (London, England)
      Elsevier

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          India has made substantial progress in improving child survival over the past few decades, but a comprehensive understanding of child mortality trends at disaggregated geographical levels is not available. We present a detailed analysis of subnational trends of child mortality to inform efforts aimed at meeting the India National Health Policy (NHP) and Sustainable Development Goal (SDG) targets for child mortality.

          Methods

          We assessed the under-5 mortality rate (U5MR) and neonatal mortality rate (NMR) from 2000 to 2017 in 5 × 5 km grids across India, and for the districts and states of India, using all accessible data from various sources including surveys with subnational geographical information. The 31 states and groups of union territories were categorised into three groups using their Socio-demographic Index (SDI) level, calculated as part of the Global Burden of Diseases, Injuries, and Risk Factors Study on the basis of per-capita income, mean education, and total fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using the coefficient of variation. We projected U5MR and NMR for the states and districts up to 2025 and 2030 on the basis of the trends from 2000 to 2017 and compared these projections with the NHP 2025 and SDG 2030 targets for U5MR (23 deaths and 25 deaths per 1000 livebirths, respectively) and NMR (16 deaths and 12 deaths per 1000 livebirths, respectively). We assessed the causes of child death and the contribution of risk factors to child deaths at the state level.

          Findings

          U5MR in India decreased from 83·1 (95% uncertainty interval [UI] 76·7–90·1) in 2000 to 42·4 (36·5–50·0) per 1000 livebirths in 2017, and NMR from 38·0 (34·2–41·6) to 23·5 (20·1–27·8) per 1000 livebirths. U5MR varied 5·7 times between the states of India and 10·5 times between the 723 districts of India in 2017, whereas NMR varied 4·5 times and 8·0 times, respectively. In the low SDI states, 275 (88%) districts had a U5MR of 40 or more per 1000 livebirths and 291 (93%) districts had an NMR of 20 or more per 1000 livebirths in 2017. The annual rate of change from 2010 to 2017 varied among the districts from a 9·02% (95% UI 6·30–11·63) reduction to no significant change for U5MR and from an 8·05% (95% UI 5·34–10·74) reduction to no significant change for NMR. Inequality between districts within the states increased from 2000 to 2017 in 23 of the 31 states for U5MR and in 24 states for NMR, with the largest increases in Odisha and Assam among the low SDI states. If the trends observed up to 2017 were to continue, India would meet the SDG 2030 U5MR target but not the SDG 2030 NMR target or either of the NHP 2025 targets. To reach the SDG 2030 targets individually, 246 (34%) districts for U5MR and 430 (59%) districts for NMR would need a higher rate of improvement than they had up to 2017. For all major causes of under-5 death in India, the death rate decreased between 2000 and 2017, with the highest decline for infectious diseases, intermediate decline for neonatal disorders, and the smallest decline for congenital birth defects, although the magnitude of decline varied widely between the states. Child and maternal malnutrition was the predominant risk factor, to which 68·2% (65·8–70·7) of under-5 deaths and 83·0% (80·6–85·0) of neonatal deaths in India could be attributed in 2017; 10·8% (9·1–12·4) of under-5 deaths could be attributed to unsafe water and sanitation and 8·8% (7·0–10·3) to air pollution.

          Interpretation

          India has made gains in child survival, but there are substantial variations between the states in the magnitude and rate of decline in mortality, and even higher variations between the districts of India. Inequality between districts within states has increased for the majority of the states. The district-level trends presented here can provide crucial guidance for targeted efforts needed in India to reduce child mortality to meet the Indian and global child survival targets. District-level mortality trends along with state-level trends in causes of under-5 and neonatal death and the risk factors in this Article provide a comprehensive reference for further planning of child mortality reduction in India.

          Funding

          Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

          Summary Background 18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016. Methods Using all available data sources, the India State-level Disease Burden Initiative estimated burden (metrics were deaths, disability-adjusted life-years [DALYs], prevalence, incidence, and life expectancy) from 333 disease conditions and injuries and 84 risk factors for each state of India from 1990 to 2016 as part of GBD 2016. We divided the states of India into four epidemiological transition level (ETL) groups on the basis of the ratio of DALYs from communicable, maternal, neonatal, and nutritional diseases (CMNNDs) to those from non-communicable diseases (NCDs) and injuries combined in 2016. We assessed variations in the burden of diseases and risk factors between ETL state groups and between states to inform a more specific health-system response in the states and for India as a whole. Findings DALYs due to NCDs and injuries exceeded those due to CMNNDs in 2003 for India, but this transition had a range of 24 years for the four ETL state groups. The age-standardised DALY rate dropped by 36·2% in India from 1990 to 2016. The numbers of DALYs and DALY rates dropped substantially for most CMNNDs between 1990 and 2016 across all ETL groups, but rates of reduction for CMNNDs were slowest in the low ETL state group. By contrast, numbers of DALYs increased substantially for NCDs in all ETL state groups, and increased significantly for injuries in all ETL state groups except the highest. The all-age prevalence of most leading NCDs increased substantially in India from 1990 to 2016, and a modest decrease was recorded in the age-standardised NCD DALY rates. The major risk factors for NCDs, including high systolic blood pressure, high fasting plasma glucose, high total cholesterol, and high body-mass index, increased from 1990 to 2016, with generally higher levels in higher ETL states; ambient air pollution also increased and was highest in the low ETL group. The incidence rate of the leading causes of injuries also increased from 1990 to 2016. The five leading individual causes of DALYs in India in 2016 were ischaemic heart disease, chronic obstructive pulmonary disease, diarrhoeal diseases, lower respiratory infections, and cerebrovascular disease; and the five leading risk factors for DALYs in 2016 were child and maternal malnutrition, air pollution, dietary risks, high systolic blood pressure, and high fasting plasma glucose. Behind these broad trends many variations existed between the ETL state groups and between states within the ETL groups. Of the ten leading causes of disease burden in India in 2016, five causes had at least a five-times difference between the highest and lowest state-specific DALY rates for individual causes. Interpretation Per capita disease burden measured as DALY rate has dropped by about a third in India over the past 26 years. However, the magnitude and causes of disease burden and the risk factors vary greatly between the states. The change to dominance of NCDs and injuries over CMNNDs occurred about a quarter century apart in the four ETL state groups. Nevertheless, the burden of some of the leading CMNNDs continues to be very high, especially in the lowest ETL states. This comprehensive mapping of inequalities in disease burden and its causes across the states of India can be a crucial input for more specific health planning for each state as is envisioned by the Government of India's premier think tank, the National Institution for Transforming India, and the National Health Policy 2017. Funding Bill & Melinda Gates Foundation; Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India; and World Bank
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

            Summary Background Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. Methods We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15–60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. Findings Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5–24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates—a measure of relative inequality—increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7–87·2), and for men in Singapore, at 81·3 years (78·8–83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, and the gap between male and female life expectancy increased with progression to higher levels of SDI. Some countries with exceptional health performance in 1990 in terms of the difference in observed to expected life expectancy at birth had slower progress on the same measure in 2016. Interpretation Globally, mortality rates have decreased across all age groups over the past five decades, with the largest improvements occurring among children younger than 5 years. However, at the national level, considerable heterogeneity remains in terms of both level and rate of changes in age-specific mortality; increases in mortality for certain age groups occurred in some locations. We found evidence that the absolute gap between countries in age-specific death rates has declined, although the relative gap for some age-sex groups increased. Countries that now lead in terms of having higher observed life expectancy than that expected on the basis of development alone, or locations that have either increased this advantage or rapidly decreased the deficit from expected levels, could provide insight into the means to accelerate progress in nations where progress has stalled. Funding Bill & Melinda Gates Foundation, and the National Institute on Aging and the National Institute of Mental Health of the National Institutes of Health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              India's Janani Suraksha Yojana, a conditional cash transfer programme to increase births in health facilities: an impact evaluation.

              In 2005, with the goal of reducing the numbers of maternal and neonatal deaths, the Government of India launched Janani Suraksha Yojana (JSY), a conditional cash transfer scheme, to incentivise women to give birth in a health facility. We independently assessed the effect of JSY on intervention coverage and health outcomes. We used data from the nationwide district-level household surveys done in 2002-04 and 2007-09 to assess receipt of financial assistance from JSY as a function of socioeconomic and demographic characteristics; and used three analytical approaches (matching, with-versus-without comparison, and differences in differences) to assess the effect of JSY on antenatal care, in-facility births, and perinatal, neonatal, and maternal deaths. Implementation of JSY in 2007-08 was highly variable by state-from less than 5% to 44% of women giving birth receiving cash payments from JSY. The poorest and least educated women did not always have the highest odds of receiving JSY payments. JSY had a significant effect on increasing antenatal care and in-facility births. In the matching analysis, JSY payment was associated with a reduction of 3.7 (95% CI 2.2-5.2) perinatal deaths per 1000 pregnancies and 2.3 (0.9-3.7) neonatal deaths per 1000 livebirths. In the with-versus-without comparison, the reductions were 4.1 (2.5-5.7) perinatal deaths per 1000 pregnancies and 2.4 (0.7-4.1) neonatal deaths per 1000 livebirths. The findings of this assessment are encouraging, but they also emphasise the need for improved targeting of the poorest women and attention to quality of obstetric care in health facilities. Continued independent monitoring and evaluations are important to measure the effect of JSY as financial and political commitment to the programme intensifies. Bill & Melinda Gates Foundation. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Lancet
                Lancet
                Lancet (London, England)
                Elsevier
                0140-6736
                1474-547X
                23 May 2020
                23 May 2020
                : 395
                : 10237
                : 1640-1658
                Author notes
                [* ]Correspondence to: Prof Lalit Dandona, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India lalit.dandona@ 123456icmr.gov.in
                [†]

                Collaborators listed at the end of the Article

                Article
                S0140-6736(20)30471-2
                10.1016/S0140-6736(20)30471-2
                7262604
                32413293
                60395e55-926c-40bd-98c3-c1d86ae50368
                © 2020 World Health Organization

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article