Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Shiga toxin-2 induces neutrophilia and neutrophil activation in a murine model of hemolytic uremic syndrome.

      Clinical Immunology (Orlando, Fla.)

      blood, Animals, Bacterial Toxins, pharmacology, Cell Adhesion, drug effects, Cytotoxins, Disease Models, Animal, Hemolytic-Uremic Syndrome, Humans, Leukocyte Count, Leukocytosis, Lung, cytology, Mice, Neutrophil Activation, Neutrophils, Shiga Toxins, Time Factors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the hemolytic uremic syndrome (HUS). Although it is recognized that Stx damage the glomerular endothelium, clinical and experimental evidence suggests that the inflammatory response is able to potentiate Stx toxicity. Lipopolysaccharides (LPS) and neutrophils (PMN) represent two central components of inflammation during a gram-negative infection. In this regard, patients with high peripheral PMN counts at presentation have a poor prognosis. Since the murine model has been used to study LPS-Stx interactions, we analyzed the effects of Stx alone or in combination with LPS on the kinetics of neutrophil production and activation and their participation in renal damage. We observed a sustained neutrophilia after Stx2 injection. Moreover, these neutrophils showed increased expression of CD11b, enhanced cytotoxic capacity, and greater adhesive properties. Regarding the cooperative effects of LPS on Stx2 action, we demonstrated potentiation of neutrophilia and CD11b induction at early times by pretreatment with LPS. Finally, a positive correlation between neutrophil percentage and renal damage (assayed as plasmatic urea) firmly suggests a role for PMN in the pathogenesis of HUS.

          Related collections

          Author and article information

          Journal
          10866130

          Comments

          Comment on this article