39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biofilms in Endodontics—Current Status and Future Directions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates.

          In the present study six assays for the quantification of biofilms formed in 96-well microtiter plates were optimised and evaluated: the crystal violet (CV) assay, the Syto9 assay, the fluorescein diacetate (FDA) assay, the resazurin assay, the XTT assay and the dimethyl methylene blue (DMMB) assay. Pseudomonas aeruginosa, Burkholderia cenocepacia, Staphylococcus aureus, Propionibacterium acnes and Candida albicans were used as test organisms. In general, these assays showed a broad applicability and a high repeatability for most isolates. In addition, the estimated numbers of CFUs present in the biofilms show limited variations between the different assays. Nevertheless, our data show that some assays are less suitable for the quantification of biofilms of particular isolates (e.g. the CV assay for P. aeruginosa).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enterococcus faecalis--a mechanism for its role in endodontic failure.

            Nick Love (2001)
            The aim of this study was to identify a possible mechanism that would explain how E. faecalis could survive and grow within dentinal tubules and reinfect an obturated root canal. Cells of Streptococcus gordonii DL1, Streptococcus mutans NG8, or E. faecalis JH2-2 were grown in brain heart infusion broth containing various amounts of human serum for 56 days. The ability of the three species to invade dentine and bind to immobilized type I collagen in the presence of human serum was assessed by dentine invasion and microtitre well experiments. All three species remained viable over the period of the experiment when grown in human serum. Cells of all three bacteria were able to invade dentine and bind to immobilized collagen. Both of these properties were inhibited by the presence of collagen in the cell solution. Human serum inhibited dentine invasion and collagen adhesion by S. gordonii DL1 and S. mutans NG8, whilst dentine invasion by E. faecalis JH2-2 was reduced in the presence of serum, but not inhibited, and binding to collagen was enhanced. It is postulated that a virulence factor of E. faecalis in failed endodontically treated teeth may be related to the ability of E. faecalis cells to maintain the capability to invade dentinal tubules and adhere to collagen in the presence of human serum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial susceptibility testing in biofilm-growing bacteria.

              Biofilms are organized bacterial communities embedded in an extracellular polymeric matrix attached to living or abiotic surfaces. The development of biofilms is currently recognized as one of the most relevant drivers of persistent infections. Among them, chronic respiratory infection by Pseudomonas aeruginosa in cystic fibrosis patients is probably the most intensively studied. The lack of correlation between conventional susceptibility test results and therapeutic success in chronic infections is probably a consequence of the use of planktonically growing instead of biofilm-growing bacteria. Therefore, several in vitro models to evaluate antimicrobial activity on biofilms have been implemented over the last decade. Microtitre plate-based assays, the Calgary device, substratum suspending reactors and the flow cell system are some of the most used in vitro biofilm models for susceptibility studies. Likewise, new pharmacodynamic parameters, including minimal biofilm inhibitory concentration, minimal biofilm-eradication concentration, biofilm bactericidal concentration, and biofilm-prevention concentration, have been defined in recent years to quantify antibiotic activity in biofilms. Using these parameters, several studies have shown very significant quantitative and qualitative differences for the effects of most antibiotics when acting on planktonic or biofilm bacteria. Nevertheless, standardization of the procedures, parameters and breakpoints, by official agencies, is needed before they are implemented in clinical microbiology laboratories for routine susceptibility testing. Research efforts should also be directed to obtaining a deeper understanding of biofilm resistance mechanisms, the evaluation of optimal pharmacokinetic/pharmacodynamic models for biofilm growth, and correlation with clinical outcome.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 August 2017
                August 2017
                : 18
                : 8
                : 1748
                Affiliations
                [1 ]Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; spcheung@ 123456hku.hk
                [2 ]Department of Endodontics, Benemerita Universidad Autónoma de Puebla, Puebla 72000, Mexico; moniendo@ 123456gmail.com
                [3 ]Department of Postgraduate Endodontics, University of Tlaxcala, Private practice, Puebla 72420, Mexico; jveraro@ 123456yahoo.com.mx
                [4 ]Faculty of Dentistry, International Medical University, 126, Jln Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Malaysia; udaood@ 123456hotmail.com
                [5 ]Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh 202001, India; asad.k@ 123456rediffmail.com
                [6 ]School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; ayan8@ 123456hku.hk
                Author notes
                [* ]Correspondence: prasanna@ 123456hku.hk ; Tel.: +852-2859-0581
                Article
                ijms-18-01748
                10.3390/ijms18081748
                5578138
                28800075
                60592130-c781-40ef-ba5c-32578f8291c7
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2017
                : 08 August 2017
                Categories
                Review

                Molecular biology
                bacteria,disinfection,extracellular polysaccharide,irrigation,root canal,review
                Molecular biology
                bacteria, disinfection, extracellular polysaccharide, irrigation, root canal, review

                Comments

                Comment on this article