8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evolution of the Mhc class I region: the framework hypothesis.

      Immunogenetics
      Amino Acid Sequence, Evolution, Molecular, Histocompatibility Antigens Class I, genetics, Models, Genetic, Molecular Sequence Data, Sequence Homology, Amino Acid

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A comparison of the major histocompatibility complex (Mhc) region between human and mouse highlights both stability and differences. The class II and class III regions are orthologous; they probably existed in the ancestor in a similar organization and were not subjected to major rearrangement. The class I genes, by contrast, are definitely paralogous, having been reorganized several times. As long as only class I genes were identified, the class I regions of human and mouse were difficult to compare directly. The identification of non-class I genes has allowed a comparative map to be drawn, which shows that the class I region is orthologous between human and mouse as well. The lack of orthology specifically applies to the class I sequences. However, the comparative map shows that the non-orthologous class I sequences occupy homologous locations with regard to the conserved genes. I propose a model to explain this paradox. The conserved genes may represent samples of a dense "framework" of genes whose alterations are deleterious. The homologous positions occupied by class I genes would thus represent the few permissive places allowing major perturbations. The evolution of the class I sequences, by duplication and deletion, independently in the two species, has taken place within the scope defined by the framework: insertion at the permissive places, and expansion by creation of class I-related DNA by duplication, thus pushing back the boundaries of the framework.

          Related collections

          Author and article information

          Comments

          Comment on this article