15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adapting the (fast-moving) world of molecular ecology to the (slow-moving) world of environmental regulation: lessons from the UK diatom metabarcoding exercise

      Metabarcoding and Metagenomics
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Development of effective metabarcoding-based tools for ecological assessment requires more than just detailed knowledge of ecology and molecular genetics. There is also a need to understand the context within which they will be used, and for the organisation that uses it to understand the techniques involved and, more especially, how the data that are produced differs from that generated by traditional ecological methods. Lessons learnt during the development of a metabarcoding tool for phytobenthos in the UK are set out in this paper. This attempted to develop a molecular “mirror” of the existing light microscopy-based approach to ecological assessment. Although this conservative approach does not exploit the full potential of metabarcoding data, it does mean that benchmarks exist against which performance and data can be judged. However, the pace of developments within molecular ecology means that regulators will need to find ways of incorporating new scientific insights whilst, at the same time, ensuring a stable regulatory regime. Installation of a metabarcoding technique within a regulatory organisation, in other words, is more than a transaction in which one approach is switched for another. A deeper transformation of the organisation is required.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing.

          Biological monitoring has failed to develop from simple binary assessment outcomes of the impacted/unimpacted type, towards more diagnostic frameworks, despite significant scientific effort over the past fifty years. It is our assertion that this is largely because of the limited information content of biological samples processed by traditional morphology-based taxonomy, which is a slow, imprecise process, focused on restricted groups of organisms. We envision a new paradigm in ecosystem assessment, which we refer to as ‘Biomonitoring 2.0’. This new schema employs DNA-based identification of taxa, coupled with high-throughput DNA sequencing on next-generation sequencing platforms. We discuss the transformational nature of DNA-based approaches in biodiversity discovery and ecosystem assessment and outline a path forward for their future widespread application.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.

              Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification into standard ecological assessment, in particular considering any adaptations to the WFD that may be required to facilitate the transition to molecular data.
                Bookmark

                Author and article information

                Journal
                Metabarcoding and Metagenomics
                MBMG
                Pensoft Publishers
                2534-9708
                December 18 2019
                December 18 2019
                : 3
                Article
                10.3897/mbmg.3.39041
                606abd08-7bb8-4ba3-87c8-a576b63420f4
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article