23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The next evolutionary synthesis: from Lamarck and Darwin to genomic variation and systems biology

      book-review
      1 ,
      Cell Communication and Signaling : CCS
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evolutionary synthesis, the standard 20 th century view of how evolutionary change occurs, is based on selection, heritable phenotypic variation and a very simple view of genes. It is therefore unable to incorporate two key aspects of modern molecular knowledge: first is the richness of genomic variation, so much more complicated than simple mutation, and second is the opaque relationship between the genotype and its resulting phenotype. Two new and important books shed some light on how we should view evolutionary change now. Evolution: a view from the 21 st century by J.A. Shapiro (2011, FT Press Science, New Jersey, USA. pp. 246.) examines the richness of genomic variation and its implications. Transformations of Lamarckism: from Subtle Fluids to Molecular Biology edited by S.B. Gissis & E. Jablonka (2011, MIT Press, Cambridge, USA. pp. 457) includes some 40 papers that anyone with an interest in the history of evolutionary thought and the relationship between the environment and the genome will want to read. This review discusses both books within the context of contemporary evolutionary thinking and points out that neither really comes to terms with today's key systems-biology question: how does mutation-induced variation in a molecular network generate variation in the resulting phenotype?

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Speciation by distance in a ring species.

          Ring species, which consist of two reproductively isolated forms connected by a chain of intergrading populations, have often been described as examples of speciation despite gene flow between populations, but this has never been demonstrated. We used amplified fragment length polymorphism (AFLP) markers to study gene flow in greenish warblers (Phylloscopus trochiloides). These genetic markers show distinct differences between two reproductively isolated forms but gradual change through the ring connecting these forms. These findings provide the strongest evidence yet for "speciation by force of distance" in the face of ongoing gene flow.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Genetic Assimilation of the Bithorax Phenotype

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene regulatory networks generating the phenomena of additivity, dominance and epistasis.

              We show how the phenomena of genetic dominance, overdominance, additivity, and epistasis are generic features of simple diploid gene regulatory networks. These regulatory network models are together sufficiently complex to catch most of the suggested molecular mechanisms responsible for generating dominant mutations. These include reduced gene dosage, expression or protein activity (haploinsufficiency), increased gene dosage, ectopic or temporarily altered mRNA expression, increased or constitutive protein activity, and dominant negative effects. As classical genetics regards the phenomenon of dominance to be generated by intralocus interactions, we have studied two one-locus models, one with a negative autoregulatory feedback loop, and one with a positive autoregulatory feedback loop. To include the phenomena of epistasis and downstream regulatory effects, a model of a three-locus signal transduction network is also analyzed. It is found that genetic dominance as well as overdominance may be an intra- as well as interlocus interaction phenomenon. In the latter case the dominance phenomenon is intimately connected to either feedback-mediated epistasis or downstream-mediated epistasis. It appears that in the intra- as well as the interlocus case there is considerable room for additive gene action, which may explain to some degree the predictive power of quantitative genetic theory, with its emphasis on this type of gene action. Furthermore, the results illuminate and reconcile the prevailing explanations of heterosis, and they support the old conjecture that the phenomenon of dominance may have an evolutionary explanation related to life history strategy.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2011
                3 November 2011
                : 9
                : 30
                Affiliations
                [1 ]Department of Physiology, Anatomy & Genetics, University of Oxford, UK
                Article
                1478-811X-9-30
                10.1186/1478-811X-9-30
                3215633
                22053760
                606eb39a-0183-4c86-a807-e80baffbcaa6
                Copyright ©2011 Bard; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 October 2011
                : 3 November 2011
                Categories
                Book Review

                Cell biology
                Cell biology

                Comments

                Comment on this article