12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Modified Spin-Echo Method for Measuring Nuclear Relaxation Times

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

            Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preserving electron spin coherence in solids by optimal dynamical decoupling.

              To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.
                Bookmark

                Author and article information

                Journal
                PRAHB2
                Physical Review Applied
                Phys. Rev. Applied
                American Physical Society (APS)
                2331-7019
                May 2017
                May 2017
                : 7
                : 5
                Article
                10.1103/PhysRevApplied.7.054009
                606ef4e2-5760-4116-8568-efa61d92dd24
                © 2017

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article