11
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Growth hormone deficiency as a cause for short stature in Wiedemann–Steiner Syndrome

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Wiedemann–Steiner Syndrome (WSS) is a rare condition characterised by short stature, hypertrichosis of the elbow, intellectual disability and characteristic facial dysmorphism due to heterozygous loss of function mutations in KMT2A, a gene encoding a histone 3 lysine 4 methyltransferase. Children with WSS are often short and until recently, it had been assumed that short stature is an intrinsic part of the syndrome. GHD has recently been reported as part of the phenotypic spectrum of WSS. We describe the case of an 8-year-old boy with a novel heterozygous variant in KMT2A and features consistent with a diagnosis of WSS who also had growth hormone deficiency (GHD). GHD was diagnosed on dynamic function testing for growth hormone (GH) secretion, low insulin-like growth factor I (IGF-I) levels and pituitary-specific MRI demonstrating anterior pituitary hypoplasia and an ectopic posterior pituitary. Treatment with GH improved height performance with growth trajectory being normalised to the parental height range. Our case highlights the need for GH testing in children with WSS and short stature as treatment with GH improves growth trajectory.

          Learning points:
          • Growth hormone deficiency might be part of the phenotypic spectrum of Wiedemann–Steiner Syndrome (WSS).

          • Investigation of pituitary function should be undertaken in children with WSS and short stature. A pituitary MR scan should be considered if there is biochemical evidence of growth hormone deficiency (GHD).

          • Recombinant human growth hormone treatment should be considered for treatment of GHD.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Histone H3 lysine 4 methyltransferase KMT2D.

          Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and MLL2 in humans and Mll4 in mice, belongs to a family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein over 5500 amino acids in size and is partially functionally redundant with KMT2C. KMT2D is widely expressed in adult tissues and is essential for early embryonic development. The C-terminal SET domain is responsible for its H3K4 methyltransferase activity and is necessary for maintaining KMT2D protein stability in cells. KMT2D associates with WRAD (WDR5, RbBP5, ASH2L, and DPY30), NCOA6, PTIP, PA1, and H3K27 demethylase UTX in one protein complex. It acts as a scaffold protein within the complex and is responsible for maintaining the stability of UTX. KMT2D is a major mammalian H3K4 mono-methyltransferase and co-localizes with lineage determining transcription factors on transcriptional enhancers. It is required for the binding of histone H3K27 acetyltransferases CBP and p300 on enhancers, enhancer activation and cell-type specific gene expression during differentiation. KMT2D plays critical roles in regulating development, differentiation, metabolism, and tumor suppression. It is frequently mutated in developmental diseases, such as Kabuki syndrome and congenital heart disease, and various forms of cancer. Further understanding of the mechanism through which KMT2D regulates gene expression will reveal why KMT2D mutations are so harmful and may help generate novel therapeutic approaches.
            • Record: found
            • Abstract: found
            • Article: not found

            Histone Lysine Methylases and Demethylases in the Landscape of Human Developmental Disorders

            Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C , ASH1L , and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B -related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome.

              CHARGE syndrome [coloboma of the eye, heart defects, atresia of the choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities (including deafness)] is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. De novo mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Here, we review the clinical features of 379 CHARGE patients who tested positive or negative for mutations in CHD7. We found that CHARGE individuals with CHD7 mutations more commonly have ocular colobomas, temporal bone anomalies (semicircular canal hypoplasia/dysplasia), and facial nerve paralysis compared with mutation negative individuals. We also highlight recent genetic and genomic studies that have provided functional insights into CHD7 and the pathogenesis of CHARGE syndrome. (c) 2010 Wiley-Liss, Inc.

                Author and article information

                Journal
                Endocrinol Diabetes Metab Case Rep
                Endocrinol Diabetes Metab Case Rep
                EDM
                Endocrinology, Diabetes & Metabolism Case Reports
                Bioscientifica Ltd (Bristol )
                2052-0573
                23 August 2018
                2018
                : 2018
                : 18-0085
                Affiliations
                [1 ]Department of Paediatric Endocrinology , Royal Manchester Children’s Hospital, Manchester, UK
                [2 ]Manchester Medical School , Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
                [3 ]Manchester Centre for Genomic Medicine , Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
                [4 ]Manchester Centre for Genomic Medicine , St Mary’s Hospital, Manchester University, NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
                Author notes
                Correspondence should be addressed to G Stoyle Email GStoyle1@ 123456gmail.com
                Article
                EDM180085
                10.1530/EDM-18-0085
                6109209
                30159147
                6073ffef-0e79-4cde-92c3-fc0687aca5a3
                © 2018 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

                History
                : 07 July 2018
                : 06 August 2018
                Categories
                Unique/Unexpected Symptoms or Presentations of a Disease

                Comments

                Comment on this article

                Related Documents Log