58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surgical Approaches to Create Murine Models of Human Wound Healing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wound repair is a complex biologic process which becomes abnormal in numerous disease states. Although in vitro models have been important in identifying critical repair pathways in specific cell populations, in vivo models are necessary to obtain a more comprehensive and pertinent understanding of human wound healing. The laboratory mouse has long been the most common animal research tool and numerous transgenic strains and models have been developed to help researchers study the molecular pathways involved in wound repair and regeneration. This paper aims to highlight common surgical mouse models of cutaneous disease and to provide investigators with a better understanding of the benefits and limitations of these models for translational applications.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.

          Fibroproliferative diseases, including the pulmonary fibroses, systemic sclerosis, liver cirrhosis, cardiovascular disease, progressive kidney disease, and macular degeneration, are a leading cause of morbidity and mortality and can affect all tissues and organ systems. Fibrotic tissue remodeling can also influence cancer metastasis and accelerate chronic graft rejection in transplant recipients. Nevertheless, despite its enormous impact on human health, there are currently no approved treatments that directly target the mechanism(s) of fibrosis. The primary goals of this Review series on fibrotic diseases are to discuss some of the major fibroproliferative diseases and to identify the common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative and reproducible murine model of excisional wound healing.

            The goal of animal wound healing models is to replicate human physiology and predict therapeutic outcomes. There is currently no model of wound healing in rodents that closely parallels human wound healing. Rodents are attractive candidates for wound healing studies because of their availability, low cost, and ease of handling. However, rodent models have been criticized because the major mechanism of wound closure is contraction, whereas in humans reepithelialization and granulation tissue formation are the major mechanisms involved. This article describes a novel model of wound healing in mice utilizing wound splinting that is accurate, reproducible, minimizes wound contraction, and allows wound healing to occur through the processes of granulation and reepithelialization. Our results show that splinted wounds have an increased amount of granulation tissue deposition as compared to controls, but the rate of reepithelialization is not affected. Thus, this model eliminates wound contraction and allows rodents' wounds to heal by epithelialization and granulation tissue formation. Given these analogies to human wound healing, we believe that this technique is a useful model for the study of wound healing mechanisms and for the evaluation of new therapeutic modalities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis.

              Hypertrophic scars occur following cutaneous wounding and result in severe functional and esthetic defects. The pathophysiology of this process remains unknown. Here, we demonstrate for the first time that mechanical stress applied to a healing wound is sufficient to produce hypertrophic scars in mice. The resulting scars are histopathologically identical to human hypertrophic scars and persist for more than six months following a brief (one-week) period of augmented mechanical stress during the proliferative phase of wound healing. Resulting scars are structurally identical to human hypertrophic scars and showed dramatic increases in volume (20-fold) and cellular density (20-fold). The increased cellularity is accompanied by a four-fold decrease in cellular apoptosis and increased activation of the prosurvival marker Akt. To clarify the importance of apoptosis in hypertrophic scar formation, we examine the effects of mechanical loading on cutaneous wounds of animals with altered pathways of cellular apoptosis. In p53-null mice, with down-regulated cellular apoptosis, we observe significantly greater scar hypertrophy and cellular density. Conversely, scar hypertrophy and cellular density are significantly reduced in proapoptotic BclII-null mice. We conclude that mechanical loading early in the proliferative phase of wound healing produces hypertrophic scars by inhibiting cellular apoptosis through an Akt-dependent mechanism.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2011
                1 December 2010
                : 2011
                : 969618
                Affiliations
                Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University, 257 Campus Drive, GK210, Stanford, CA 94305, USA
                Author notes
                *Geoffrey C. Gurtner: ggurtner@ 123456stanford.edu

                Academic Editor: Andrea Vecchione

                Article
                10.1155/2011/969618
                2995912
                21151647
                60741fc9-bb97-4a63-a485-b8e8ea22a4f8
                Copyright © 2011 Victor W. Wong et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 September 2010
                : 26 October 2010
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article