7
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A probiotic mix partially protects against castration-induced bone loss in male mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies in postmenopausal women and ovariectomized mice show that the probiotic mix Lacticaseibacillus paracasei DSM13434, Lactiplantibacillus plantarum DSM 15312 and DSM 15313 ( L. Mix) can protect from bone loss caused by sex steroid deficiency. Whether probiotic bacteria can protect bone also in sex steroid-deficient males is less studied. We used the orchiectomized mouse as a model for age-dependent bone loss caused by decreasing sex hormone levels in males. We treated 10-week-old male mice with either vehicle (veh) or L. Mix for 6 weeks, starting 2 weeks before orchiectomy (orx) or sham surgery. Importantly, mice treated with L. Mix had a general increase in total body bone mineral density (BMD) and lean mass ( P ≤ 0.05) compared with veh-treated mice. Detailed computer tomography analysis of dissected bones showed increased trabecular BMD of the distal metaphyseal region of the femur in L. Mix compared to veh-treated orx mice (+8.0%, P ≤ 0.05). In the vertebra, L. Mix treatment increased trabecular bone volume fraction BV/TV (+11.5%, P ≤ 0.05) compared to veh in orx mice. Also, L. Mix increased the levels of short-chain fatty acids (SCFAs) such as propionate and acetate and important intermediates in SCFA synthesis such as succinate and lactate in the cecal content of male mice. In conclusion, L. Mix treatment resulted in a general increase in BMD in adult male mice and prevented trabecular bone loss in femur and vertebra of orx mice. These bone protective effects of L. Mix were associated with increased levels of SCFAs in the cecal content of male mice.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.

          Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.
            • Record: found
            • Abstract: found
            • Article: not found

            Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.

            Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4(+) CD45RB(hi) T cells in Rag1(-/-) mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host-microbe interactions establish immunological homeostasis in the gut.
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation

              Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T (Treg) cells expressing transcription factor Foxp3 play a key role in limiting inflammatory responses in the intestine 1 . Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory Th17 cells 2-6 , the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we hypothesized that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We found that a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg cell numbers upon provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells as the observed phenomenon was dependent upon intronic enhancer CNS1, essential for extrathymic, but dispensable for thymic Treg cell differentiation 1, 7 . In addition to butyrate, de novo Treg cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of HDAC inhibition, but not acetate, lacking this activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.

                Author and article information

                Journal
                J Endocrinol
                J Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                30 May 2022
                01 August 2022
                : 254
                : 2
                : 91-101
                Affiliations
                [1 ]Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research , Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
                [2 ]Mary MacKillop Institute for Health Research , Australian Catholic University, Melbourne, Australia
                Author notes
                Correspondence should be addressed to K Sjögren: Klara.Sjogren@ 123456medic.gu.se
                Author information
                http://orcid.org/0000-0003-2082-4886
                http://orcid.org/0000-0002-1712-6131
                http://orcid.org/0000-0001-5776-7278
                Article
                JOE-21-0408
                10.1530/JOE-21-0408
                9254303
                35661635
                6084a34b-e9de-44ef-be9c-a7fd9482ece0
                © The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 23 May 2022
                : 30 May 2022
                Categories
                Research

                Endocrinology & Diabetes
                osteoporosis,bone mass,probiotic,gut microbiome,short-chain fatty acids
                Endocrinology & Diabetes
                osteoporosis, bone mass, probiotic, gut microbiome, short-chain fatty acids

                Comments

                Comment on this article

                Related Documents Log