24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental pH, O2 and Capsular Effects on the Geochemical Composition of Statoliths of Embryonic Squid Doryteuthis opalescens

      , , , ,
      Water
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found

          Ocean acidification: the other CO2 problem.

          Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Replenishment of fish populations is threatened by ocean acidification.

              There is increasing concern that ocean acidification, caused by the uptake of additional CO(2) at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO(2) predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO(2), with many individuals becoming attracted to the smell of predators. At 850 ppm CO(2), the ability to sense predators was completely impaired. Larvae exposed to elevated CO(2) were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5-9 times higher mortality from predation than current-day controls, with mortality increasing with CO(2) concentration. Our results show that additional CO(2) absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations.
                Bookmark

                Author and article information

                Journal
                WATEGH
                Water
                Water
                MDPI AG
                2073-4441
                August 2014
                July 30 2014
                : 6
                : 8
                : 2233-2254
                Article
                10.3390/w6082233
                6084c423-7dae-4095-8c30-80f3a6b1aa1c
                © 2014

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article