57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      'Fat mass and obesity associated' gene ( FTO): No significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We have previously identified strong association of six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) to early onset extreme obesity within the first genome wide association study (GWA) for this phenotype. The aim of this study was to investigate whether the obesity risk allele of one of these SNPs (rs9939609) is associated with weight loss in a lifestyle intervention program. Additionally, we tested for association of rs9939609 alleles with fasting blood parameters indicative of glucose and lipid metabolism.

          Methods

          We initially analysed rs9939609 in a case-control study comprising 519 German overweight and obese children and adolescents and 178 normal weight adults. In 207 of the obese individuals who took part in the outpatient obesity intervention program 'Obeldicks' we further analysed whether carrier status of the obesity risk A-allele of rs9939609 has a differential influence on weight loss after the intervention program. Additionally, we investigated in 480 of the overweight and obese patients whether rs9939609 is associated with fasting blood levels of glucose, triglycerides and HDL and LDL-cholesterol. Genotyping was performed using allele specific polymerase chain reaction (ARMS-PCR). For the association study (case-control approach), the Cochran-Armitage trend test was applied. Blood parameters were analysed using commercially available test kits and the log10-transformed blood parameters and changes in BMI-standard deviation scores (BMI-SDS) were analysed by linear regression with sex and age as covariates under an additive mode of inheritance with the rs9939609 A-allele as risk allele.

          Results

          We confirmed the association of the risk A-allele of rs9939609 with overweight and early onset obesity (one sided p = 0.036). However, we observed no association of rs9939609 alleles with weight loss or fasting levels of blood glucose, triglycerides and cholesterol.

          Conclusion

          We confirmed the rs9939609 A-allele as a risk factor for early onset obesity whereas its impact on weight loss or on serum levels of glucose, triglycerides and cholesterol could not be detected in our samples.

          Trial Registration

          This study is registered at clinicaltrials.gov (NCT00435734).

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase.

          Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate-dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An efficient procedure for genotyping single nucleotide polymorphisms.

            S. Ye (2001)
            Analysis of single nucleotide polymorphisms (SNPs) has been and will be increasingly utilized in various genetic disciplines, particularly in studying genetic determinants of complex diseases. Such studies will be facilitated by rapid, simple, low cost and high throughput methodologies for SNP genotyping. One such method is reported here, named tetra-primer ARMS-PCR, which employs two primer pairs to amplify, respectively, the two different alleles of a SNP in a single PCR reaction. A computer program for designing primers was developed. Tetra-primer ARMS-PCR was combined with microplate array diagonal gel electrophoresis, gaining the advantage of high throughput for gel-based resolution of tetra-primer ARMS-PCR products. The technique was applied to analyse a number of SNPs and the results were completely consistent with those from an independent method, restriction fragment length polymorphism analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI.

              Common variation in the FTO gene is associated with BMI and type 2 diabetes. Increased BMI is associated with diabetes risk factors, including raised insulin, glucose, and triglycerides. We aimed to test whether FTO genotype is associated with variation in these metabolic traits. We tested the association between FTO genotype and 10 metabolic traits using data from 17,037 white European individuals. We compared the observed effect of FTO genotype on each trait to that expected given the FTO-BMI and BMI-trait associations. Each copy of the FTO rs9939609 A allele was associated with higher fasting insulin (0.039 SD [95% CI 0.013-0.064]; P = 0.003), glucose (0.024 [0.001-0.048]; P = 0.044), and triglycerides (0.028 [0.003-0.052]; P = 0.025) and lower HDL cholesterol (0.032 [0.008-0.057]; P = 0.009). There was no evidence of these associations when adjusting for BMI. Associations with fasting alanine aminotransferase, gamma-glutamyl-transferase, LDL cholesterol, A1C, and systolic and diastolic blood pressure were in the expected direction but did not reach P 12,000 individuals were needed to detect associations at P < 0.05. Our findings highlight the importance of using appropriately powered studies to assess the effects of a known diabetes or obesity variant on secondary traits correlated with these conditions.
                Bookmark

                Author and article information

                Journal
                BMC Med Genet
                BMC Medical Genetics
                BioMed Central
                1471-2350
                2008
                17 September 2008
                : 9
                : 85
                Affiliations
                [1 ]Department of Child and Adolescent Psychiatry and Psychotherapy, University of Duisburg-Essen, Essen, Germany
                [2 ]Institute of Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
                [3 ]Institute of Medical Biometry and Epidemiology, Philipps-University, Marburg, Germany
                [4 ]Children's Hospital Medical Center, University of Bonn, Germany
                [5 ]Children's Hospital & Regional Medical Center, University of Washington, Seattle, USA
                [6 ]Vestische Kinder- und Jugendklinik, University of Witten/Herdecke, Datteln, Germany
                Article
                1471-2350-9-85
                10.1186/1471-2350-9-85
                2553771
                18799002
                6085e18e-52f2-421f-a75c-ed1779505e32
                Copyright © 2008 Müller et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 February 2008
                : 17 September 2008
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article