64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New directions in the pursuit of Majorana fermions in solid state systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 1937 theoretical discovery of Majorana fermions--whose defining property is that they are their own anti-particles--has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review article highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic `topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to `engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals, and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects, and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions--the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Helical liquids and Majorana bound states in quantum wires

          We show that the combination of spin-orbit coupling with a Zeeman field or strong interactions may lead to the formation of a helical liquid in single-channel quantum wires. In a helical liquid, electrons with opposite velocities have opposite spin precession. We argue that zero-energy Majorana bound states are formed in various situations when the wire is situated in proximity to a conventional s-wave superconductor. This occurs when the external magnetic field, the superconducting gap, or, in particular, the chemical potential vary along the wire. We discuss experimental consequences of the formation of the helical liquid and the Majorana bound states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Topological quantum buses: coherent quantum information transfer between topological and conventional qubits

            , (2013)
            We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Controlling non-Abelian statistics of Majorana fermions on Majorana dimer lattices

              Under appropriate external conditions a semiconductor nanowire in proximity to an s-wave superconductor can be in a topological superconducting (TS) phase. This phase supports localized zero-energy Majorana fermions at the ends of the wire. However, the non-Abelian exchange statistics of Majorana fermions is difficult verify because of the one-dimensional topology of such wires. In this paper we propose a scheme to transport Majorana fermions between the ends of different wires using tunneling, which is shown to be controllable by gate voltages. Such tunneling-generated hops of Majorana fermions can be used to exchange the Majorana fermions. The exchange process thus obtained is described by a non-Abelian braid operator that is uniquely determined by the well-controlled microscopic tunneling parameters.
                Bookmark

                Author and article information

                Journal
                06 February 2012
                Article
                10.1088/0034-4885/75/7/076501
                1202.1293
                608b1c29-9ca9-4365-a784-7ce34cb4ae10

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Rep. Prog. Phys. 75, 076501 (2012)
                Review article for Reports on Progress in Physics; 36 pages, 13 figures
                cond-mat.supr-con cond-mat.str-el

                Comments

                Comment on this article