10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemodiversity of cereulide, the emetic toxin of Bacillus cereus.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Food-borne intoxications are increasingly caused by the dodecadepsipeptide cereulide, the emetic toxin produced by Bacillus cereus. As such intoxications pose a health risk to humans, a more detailed understanding on the chemodiversity of this toxin is mandatory for the reliable risk assessment of B. cereus toxins in foods. Mass spectrometric screening now shows a series of at least 18 cereulide variants, among which the previously unknown isocereulides A-G were determined for the first time by means of UPLC-TOF MS and ion-trap MS(n) sequencing, (13)C-labeling experiments, and post-hydrolytic dipeptide and enantioselective amino acid analysis. The data demonstrate a high microheterogeneity in cereulide and show evidence for a relaxed proof reading function of the non-ribosomal cereulide peptide synthetase complex giving rise to an enhanced cereulide chemodiversity. Most intriguingly, the isocereulides were found to differ widely in their cell toxicity correlating with their ionophoric properties (e.g., purified isocereulide A showed about 8-fold higher cytotoxicity than purified cereulide in the HEp-2 assay and induced an immediate breakdown of bilayer membranes). These findings provide a substantial contribution to the knowledge-based risk assessment of B. cereus toxins in foods, representing a still unsolved challenge in the field of food intoxications.

          Related collections

          Author and article information

          Journal
          Anal Bioanal Chem
          Analytical and bioanalytical chemistry
          Springer Science and Business Media LLC
          1618-2650
          1618-2642
          Mar 2015
          : 407
          : 9
          Affiliations
          [1 ] Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Lise-Meitner-Straße 34, 85354, Freising, Germany.
          Article
          10.1007/s00216-015-8511-y
          25665710
          609b040e-b7e4-41f1-bc24-0ce34776f23b
          History

          Comments

          Comment on this article