44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Folinic acid improves verbal communication in children with autism and language impairment: a randomized double-blind placebo-controlled trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We sought to determine whether high-dose folinic acid improves verbal communication in children with non-syndromic autism spectrum disorder (ASD) and language impairment in a double-blind placebo control setting. Forty-eight children (mean age 7 years 4  months; 82% male) with ASD and language impairment were randomized to receive 12 weeks of high-dose folinic acid (2 mg kg −1 per day, maximum 50 mg per day; n=23) or placebo ( n=25). Children were subtyped by glutathione and folate receptor-α autoantibody (FRAA) status. Improvement in verbal communication, as measured by a ability-appropriate standardized instrument, was significantly greater in participants receiving folinic acid as compared with those receiving placebo, resulting in an effect of 5.7 (1.0,10.4) standardized points with a medium-to-large effect size (Cohen’s d=0.70). FRAA status was predictive of response to treatment. For FRAA-positive participants, improvement in verbal communication was significantly greater in those receiving folinic acid as compared with those receiving placebo, resulting in an effect of 7.3 (1.4,13.2) standardized points with a large effect size (Cohen’s d=0.91), indicating that folinic acid treatment may be more efficacious in children with ASD who are FRAA positive. Improvements in subscales of the Vineland Adaptive Behavior Scale, the Aberrant Behavior Checklist, the Autism Symptom Questionnaire and the Behavioral Assessment System for Children were significantly greater in the folinic acid group as compared with the placebo group. There was no significant difference in adverse effects between treatment groups. Thus, in this small trial of children with non-syndromic ASD and language impairment, treatment with high-dose folinic acid for 12 weeks resulted in improvement in verbal communication as compared with placebo, particularly in those participants who were positive for FRAAs.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures

          Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation of trends between the four major areas and the four comparison areas demonstrated that the largest relative growth was in immune dysregulation/inflammation, oxidative stress, toxicant exposures, genetics and neuroimaging. Research on mitochondrial dysfunction started growing in the last 5 years. Theory of mind and neuropathology research has declined in recent years. Although most publications implicated an association between the four major areas and ASD, publication bias may have led to an overestimation of this association. Further research into these physiological areas may provide insight into general or subset-specific processes that could contribute to the development of ASD and other psychiatric disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sulforaphane treatment of autism spectrum disorder (ASD).

            Autism spectrum disorder (ASD), characterized by both impaired communication and social interaction, and by stereotypic behavior, affects about 1 in 68, predominantly males. The medico-economic burdens of ASD are enormous, and no recognized treatment targets the core features of ASD. In a placebo-controlled, double-blind, randomized trial, young men (aged 13-27) with moderate to severe ASD received the phytochemical sulforaphane (n = 29)--derived from broccoli sprout extracts--or indistinguishable placebo (n = 15). The effects on behavior of daily oral doses of sulforaphane (50-150 µmol) for 18 wk, followed by 4 wk without treatment, were quantified by three widely accepted behavioral measures completed by parents/caregivers and physicians: the Aberrant Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and Clinical Global Impression Improvement Scale (CGI-I). Initial scores for ABC and SRS were closely matched for participants assigned to placebo and sulforaphane. After 18 wk, participants receiving placebo experienced minimal change (<3.3%), whereas those receiving sulforaphane showed substantial declines (improvement of behavior): 34% for ABC (P < 0.001, comparing treatments) and 17% for SRS scores (P = 0.017). On CGI-I, a significantly greater number of participants receiving sulforaphane had improvement in social interaction, abnormal behavior, and verbal communication (P = 0.015-0.007). Upon discontinuation of sulforaphane, total scores on all scales rose toward pretreatment levels. Dietary sulforaphane, of recognized low toxicity, was selected for its capacity to reverse abnormalities that have been associated with ASD, including oxidative stress and lower antioxidant capacity, depressed glutathione synthesis, reduced mitochondrial function and oxidative phosphorylation, increased lipid peroxidation, and neuroinflammmation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children.

              Prenatal folic acid supplements reduce the risk of neural tube defects in children, but it has not been determined whether they protect against other neurodevelopmental disorders. To examine the association between maternal use of prenatal folic acid supplements and subsequent risk of autism spectrum disorders (ASDs) (autistic disorder, Asperger syndrome, pervasive developmental disorder-not otherwise specified [PDD-NOS]) in children. The study sample of 85,176 children was derived from the population-based, prospective Norwegian Mother and Child Cohort Study (MoBa). The children were born in 2002-2008; by the end of follow-up on March 31, 2012, the age range was 3.3 through 10.2 years (mean, 6.4 years). The exposure of primary interest was use of folic acid from 4 weeks before to 8 weeks after the start of pregnancy, defined as the first day of the last menstrual period before conception. Relative risks of ASDs were estimated by odds ratios (ORs) with 95% CIs in a logistic regression analysis. Analyses were adjusted for maternal education level, year of birth, and parity. Specialist-confirmed diagnosis of ASDs. At the end of follow-up, 270 children in the study sample had been diagnosed with ASDs: 114 with autistic disorder, 56 with Asperger syndrome, and 100 with PDD-NOS. In children whose mothers took folic acid, 0.10% (64/61,042) had autistic disorder, compared with 0.21% (50/24,134) in those unexposed to folic acid. The adjusted OR for autistic disorder in children of folic acid users was 0.61 (95% CI, 0.41-0.90). No association was found with Asperger syndrome or PDD-NOS, but power was limited. Similar analyses for prenatal fish oil supplements showed no such association with autistic disorder, even though fish oil use was associated with the same maternal characteristics as folic acid use. Use of prenatal folic acid supplements around the time of conception was associated with a lower risk of autistic disorder in the MoBa cohort. Although these findings cannot establish causality, they do support prenatal folic acid supplementation.
                Bookmark

                Author and article information

                Journal
                Mol Psychiatry
                Mol. Psychiatry
                Molecular Psychiatry
                Nature Publishing Group
                1359-4184
                1476-5578
                February 2018
                18 October 2016
                : 23
                : 2
                : 247-256
                Affiliations
                [1 ]Arkansas Children’s Hospital , Little Rock, AR, USA
                [2 ]Arkansas Children’s Research Institute , Little Rock, AR, USA
                [3 ]Department of Pediatrics, University of Arkansas for Medical Sciences , Little Rock, AR, USA
                [4 ]Department of Medicine, State University of New York – Downstate Medical Center , Brooklyn, NY, USA
                Author notes
                [* ]Autism Research Program, Arkansas Children's Research Institute , Slot 512-41B, 13 Children's Way, Little Rock 72202, AR, USA. E-mail: REFrye@ 123456uams.edu
                Article
                mp2016168
                10.1038/mp.2016.168
                5794882
                27752075
                609ef1e6-46ac-43b7-b066-3e121c449c6c
                Copyright © 2018 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 20 May 2016
                : 01 August 2016
                : 03 August 2016
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article