19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Osteopontin: a leading candidate adhesion molecule for implantation in pigs and sheep

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteopontin (OPN; also known as Secreted Phosphoprotein 1, SPP1) is a secreted extra-cellular matrix (ECM) protein that binds to a variety of cell surface integrins to stimulate cell-cell and cell-ECM adhesion and communication. It is generally accepted that OPN interacts with apically expressed integrin receptors on the uterine luminal epithelium (LE) and conceptus trophectoderm to attach the conceptus to the uterus for implantation. Research conducted with pigs and sheep has significantly advanced understanding of the role(s) of OPN during implantation through exploitation of the prolonged peri-implantation period of pregnancy when elongating conceptuses are free within the uterine lumen requiring extensive paracrine signaling between conceptus and endometrium. This is followed by a protracted and incremental attachment cascade of trophectoderm to uterine LE during implantation, and development of a true epitheliochorial or synepitheliochorial placenta exhibited by pigs and sheep, respectively. In pigs, implanting conceptuses secrete estrogens which induce the synthesis and secretion of OPN in adjacent uterine LE. OPN then binds to αvβ6 integrin receptors on trophectoderm, and the αvβ3 integrin receptors on uterine LE to bridge conceptus attachment to uterine LE for implantation. In sheep, implanting conceptuses secrete interferon tau that prolongs the lifespan of CL. Progesterone released by CL then induces OPN synthesis and secretion from the endometrial GE into the uterine lumen where OPN binds integrins expressed on trophectoderm (αvβ3) and uterine LE (identity of specific integrins unknown) to adhere the conceptus to the uterus for implantation. OPN binding to the αvβ3 integrin receptor on ovine trophectoderm cells induces in vitro focal adhesion assembly, a prerequisite for adhesion and migration of trophectoderm, through activation of: 1) P70S6K via crosstalk between FRAP1/MTOR and MAPK pathways; 2) MTOR, PI3K, MAPK3/MAPK1 (Erk1/2) and MAPK14 (p38) signaling to stimulate trohectoderm cell migration; and 3) focal adhesion assembly and myosin II motor activity to induce migration of trophectoderm cells. Further large in vivo focal adhesions assemble at the uterine-placental interface of both pigs and sheep and identify the involvement of sizable mechanical forces at this interface during discrete periods of trophoblast migration, attachment and placentation in both species.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Integrin signaling.

          Cells reside in a protein network, the extracellular matrix (ECM), which they secrete and mold into the intercellular space. The ECM exerts profound control over cells. The effects of the matrix are primarily mediated by integrins, a family of cell surface receptors that attach cells to the matrix and mediate mechanical and chemical signals from it. These signals regulate the activities of cytoplasmic kinases, growth factor receptors, and ion channels and control the organization of the intracellular actin cytoskeleton. Many integrin signals converge on cell cycle regulation, directing cells to live or die, to proliferate, or to exit the cell cycle and differentiate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Integrins: a family of cell surface receptors.

            R O Hynes (1987)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity.

              Cell-mediated (type-1) immunity is necessary for immune protection against most intracellular pathogens and, when excessive, can mediate organ-specific autoimmune destruction. Mice deficient in Eta-1 (also called osteopontin) gene expression have severely impaired type-1 immunity to viral infection [herpes simplex virus-type 1 (KOS strain)] and bacterial infection (Listeria monocytogenes) and do not develop sarcoid-type granulomas. Interleukin-12 (IL-12) and interferon-gamma production is diminished, and IL-10 production is increased. A phosphorylation-dependent interaction between the amino-terminal portion of Eta-1 and its integrin receptor stimulated IL-12 expression, whereas a phosphorylation-independent interaction with CD44 inhibited IL-10 expression. These findings identify Eta-1 as a key cytokine that sets the stage for efficient type-1 immune responses through differential regulation of macrophage IL-12 and IL-10 cytokine expression.
                Bookmark

                Author and article information

                Contributors
                gjohnson@cvm.tamu.edu
                rburghardt@cvm.tamu.edu
                fbazer@cvm.tamu.edu
                Journal
                J Anim Sci Biotechnol
                J Anim Sci Biotechnol
                Journal of Animal Science and Biotechnology
                BioMed Central (London )
                1674-9782
                2049-1891
                17 December 2014
                2014
                : 5
                : 1
                : 56
                Affiliations
                [ ]Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
                [ ]Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
                Article
                131
                10.1186/2049-1891-5-56
                4322467
                25671104
                60a6e187-b0ed-46e7-9893-ded56f402df6
                © Johnson et al.; licensee BioMed Central. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 August 2014
                : 25 November 2014
                Categories
                Review
                Custom metadata
                © The Author(s) 2014

                Animal science & Zoology
                implantation,integrins,psteoponti,pigs,sheep
                Animal science & Zoology
                implantation, integrins, psteoponti, pigs, sheep

                Comments

                Comment on this article