16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Membrane organisation of photosystem I complexes in the most abundant phototroph on Earth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light (HL), low-light (LL) and nutrient-poor ecological niches. We used atomic force microscopy (AFM) to image the different photosystem I (PSI) membrane architectures of the MED4 (HL) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (LL) and SS120 (LL) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome b 6 f complexes and the various Pcb proteins in the thylakoid membrane. AFM topographs and structural modelling revealed a series of specialised PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the LL MIT9313 is organised into a tightly-packed pseudo-hexagonal lattice that maximises harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly two-fold more PSII than PSI in SS120, which also has a lower content of cytochrome b 6 f complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb-PSI supercomplexes that economise on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.

          The Cyanobacteria Prochlorococcus and Synechococcus account for a substantial fraction of marine primary production. Here, we present quantitative niche models for these lineages that assess present and future global abundances and distributions. These niche models are the result of neural network, nonparametric, and parametric analyses, and they rely on >35,000 discrete observations from all major ocean regions. The models assess cell abundance based on temperature and photosynthetically active radiation, but the individual responses to these environmental variables differ for each lineage. The models estimate global biogeographic patterns and seasonal variability of cell abundance, with maxima in the warm oligotrophic gyres of the Indian and the western Pacific Oceans and minima at higher latitudes. The annual mean global abundances of Prochlorococcus and Synechococcus are 2.9 ± 0.1 × 10(27) and 7.0 ± 0.3 × 10(26) cells, respectively. Using projections of sea surface temperature as a result of increased concentration of greenhouse gases at the end of the 21st century, our niche models projected increases in cell numbers of 29% and 14% for Prochlorococcus and Synechococcus, respectively. The changes are geographically uneven but include an increase in area. Thus, our global niche models suggest that oceanic microbial communities will experience complex changes as a result of projected future climate conditions. Because of the high abundances and contributions to primary production of Prochlorococcus and Synechococcus, these changes may have large impacts on ocean ecosystems and biogeochemical cycles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prochlorococcus: the structure and function of collective diversity.

            The marine cyanobacterium Prochlorococcus is the smallest and most abundant photosynthetic organism on Earth. In this Review, we summarize our understanding of the diversity of this remarkable phototroph and describe its role in ocean ecosystems. We discuss the importance of interactions of Prochlorococcus with the physical environment, with phages and with heterotrophs in shaping the ecology and evolution of this group. In light of recent studies, we have come to view Prochlorococcus as a 'federation' of diverse cells that sustains its broad distribution, stability and abundance in the oceans via extensive genomic and phenotypic diversity. Thus, it is proving to be a useful model system for elucidating the forces that shape microbial populations and ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prochlorococcus, a marine photosynthetic prokaryote of global significance.

              The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 microm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40 degrees S to 40 degrees N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a2 and Chl b2, and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory.
                Bookmark

                Author and article information

                Journal
                101651677
                43556
                Nat Plants
                Nat Plants
                Nature plants
                2055-0278
                19 July 2019
                22 July 2019
                August 2019
                22 January 2020
                : 5
                : 8
                : 879-889
                Affiliations
                [1 ]Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
                [2 ]ChELSI Institute, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.
                [3 ]Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
                [4 ]Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
                [5 ]School of Life Sciences, University of Warwick, Coventry CV4 7AL.
                Author notes
                [* ] Correspondence and requests for materials should be addressed to CNH. c.n.hunter@ 123456sheffield.ac.uk

                Author contributions

                CM-C, DJS and CNH designed the research. CM-C, PJJ, MS, JWC, AH, PQ, MJD, GEM and DJS performed the research. CM-C, MS, MPJ, ZLS and CNH wrote the paper.

                Article
                NIHMS1531897
                10.1038/s41477-019-0475-z
                6699766
                31332310
                60bde527-e7fa-4428-a72a-a39a7db59aad

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Comments

                Comment on this article