40
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

          Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
            • Record: found
            • Abstract: found
            • Article: not found

            Bone morphogenetic proteins: a critical review.

            Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory. Copyright © 2010 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Metastasis dormancy in estrogen receptor-positive breast cancer.

              About 20% to 40% of patients with breast cancer eventually develop recurrences in distant organs, which are often not detected until years to decades after the primary tumor diagnosis. This phenomenon is especially pronounced in estrogen receptor-positive (ER(+)) breast cancer, suggesting that ER(+) cancer cells may stay dormant for a protracted period of time, despite adjuvant therapies. Multiple mechanisms have been proposed to explain how cancer cells survive and remain in dormancy, and how they become reactivated and exit dormancy. These mechanisms include angiogenic switch, immunosurveillance, and interaction with extracellular matrix and stromal cells. How to eradicate or suppress these dormant cancer cells remains a major clinical issue because of the lack of knowledge about the biologic and clinical nature of these cells. Herein, we review the clinical manifestation of metastasis dormancy in ER(+) tumors, the current biologic insights regarding tumor dormancy obtained from various experimental models, and the clinical challenges to predict, detect, and treat dormant metastases. We also discuss future research directions toward a better understanding of the biologic mechanisms and clinical management of ER(+) dormant metastasis. ©2013 AACR.

                Author and article information

                Journal
                Endocr Relat Cancer
                Endocr. Relat. Cancer
                ERC
                Endocrine-Related Cancer
                Bioscientifica Ltd (Bristol )
                1351-0088
                1479-6821
                October 2017
                21 July 2017
                : 24
                : 10
                : R349-R366
                Affiliations
                [1]Cardiff China Medical Research Collaborative Cardiff University School of Medicine, Cardiff, UK
                Author notes
                Correspondence should be addressed to L Ye; Email: YeL@ 123456Cardiff.ac.uk
                Article
                ERC170139
                10.1530/ERC-17-0139
                5574206
                28733469
                60c0995f-d06b-4426-ab98-4e5f884eec48
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License.

                History
                : 29 June 2017
                : 21 July 2017
                Categories
                Review

                Oncology & Radiotherapy
                bone morphogenetic protein,breast cancer,bone metastasis and tumour biology

                Comments

                Comment on this article

                Related Documents Log