13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tunable Thermal Transport in Polysilsesquioxane (PSQ) Hybrid Crystals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crystalline polymers have attracted significant interest in recent years due to their enhanced mechanical and thermal properties. As one type of organic-inorganic hybrid polymer crystals, polysilsesquioxane can be synthesized by large-scale and inexpensive so-gel processes with two precursors. In this paper, both octylene-bridged and hexylene-bridged PSQ crystals are characterized with infrared spectroscopy and X-ray crystallography to reveal their super high crystallinity. To study the thermal transport in these unique polymer crystals, we use a suspended micro thermal device to examine their thermal properties from 20 K to 320 K, and demonstrate their tunable thermal conductivity by varying the length of alkyl chains. We also conduct non-equilibrium molecular dynamics simulations to study the phonon behaviors across the hydrogen bond interface. The simulation results demonstrate good agreement with the experimental results regarding both the value and trend of the PSQ thermal conductivity. Furthermore, from the simulation, we find that the anharmonic phonon scattering and interfacial anharmnic coupling effects across the hydrogen bond interface may explain the experimentally observed thermal properties.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Polyethylene nanofibres with very high thermal conductivities.

          Bulk polymers are generally regarded as thermal insulators, and typically have thermal conductivities on the order of 0.1 W m(-1) K(-1). However, recent work suggests that individual chains of polyethylene--the simplest and most widely used polymer--can have extremely high thermal conductivity. Practical applications of these polymers may also require that the individual chains form fibres or films. Here, we report the fabrication of high-quality ultra-drawn polyethylene nanofibres with diameters of 50-500 nm and lengths up to tens of millimetres. The thermal conductivity of the nanofibres was found to be as high as approximately 104 W m(-1) K(-1), which is larger than the conductivities of about half of the pure metals. The high thermal conductivity is attributed to the restructuring of the polymer chains by stretching, which improves the fibre quality toward an 'ideal' single crystalline fibre. Such thermally conductive polymers are potentially useful as heat spreaders and could supplement conventional metallic heat-transfer materials, which are used in applications such as solar hot-water collectors, heat exchangers and electronic packaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy.

            Atomically thin molybdenum disulfide (MoS2) offers potential for advanced devices and an alternative to graphene due to its unique electronic and optical properties. The temperature-dependent Raman spectra of exfoliated, monolayer MoS2 in the range of 100-320 K are reported and analyzed. The linear temperature coefficients of the in-plane E2g 1 and the out-of-plane A1g modes for both suspended and substrate-supported monolayer MoS2 are measured. These data, when combined with the first-order coefficients from laser power-dependent studies, enable the thermal conductivity to be extracted. The resulting thermal conductivity κ = (34.5(4) W/mK at room temperature agrees well with the first principles lattice dynamics simulations. However, this value is significantly lower than that of graphene. The results from this work provide important input for the design of MoS2-based devices where thermal management is critical.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrafast flash thermal conductance of molecular chains.

              At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 February 2016
                2016
                : 6
                : 21452
                Affiliations
                [1 ]Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, 15213, United States
                [2 ]Department of Mechanical Engineering, University of California , Berkeley, 94720, United States
                [3 ]Department of Aerospace and Mechanical Engineering, University of Notre Dame , Notre Dame, 46556, United States
                [4 ]Institute of Materials Research and Engineering , Singapore 117602, Singapore
                [5 ]Department of Physics, King Abdulaziz University , Jeddah 21589, Saudi Arabia
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep21452
                10.1038/srep21452
                4761904
                26899682
                60cff5b4-7cdf-43e6-9bff-b87eb07eb954
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 13 October 2015
                : 22 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article