44
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isotropic freeze casting of through-porous hydroxyapatite ceramics

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has well known that hydroxyapatite (HA) is a kind of excellent materials for biomolecular absorption and separation, and the absorption and separation performances of HA would be improved if HA had been processed into desirable porous structures. In this paper, we reported on the combination of gel casting and freeze casting to develop the through-porous hydroxyapatite ceramic monoliths. Experiments demonstrated that the gel-containing freeze casting technique was an isotropic pore-forming technique and could prepare the near-net-shape forming green bodies with good mechanical strength no matter what the HA content in green bodies was. Further green body sintering formed the through-porous ceramics whose grain size, pore size, and porosity depended on and could be controlled by the content of HA in green bodies. The formation of through-pores in ceramics resulted from the gels and water in green bodies, which acted as the templates of the pores with size < 1 μm and the pores with size > 1 μm, respectively. The gel–freeze casting technique is simple, repeatable, and cost-effective, therefore being hopeful for industrial applications.

          Related collections

          Author and article information

          Journal
          J Adv Ceram
          Journal of Advanced Ceramics
          Tsinghua University Press and Springer-Verlag Berlin Heidelberg (USA )
          2227-8508
          2226-4108
          01 June 2019
          01 October 2019
          : 8
          : 2
          : 256-264
          Affiliations
          aNational Engineering Center for Biomaterials, Sichuan University, Chengdu 610064, China
          Author notes
          *Corresponding author: Youliang HONG, E-mail: hyl@ 123456scu.edu.cn
          Article
          s40145-018-0312-2
          10.1007/s40145-018-0312-2
          Copyright © The Author(s)

          This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See https://creativecommons.org/licenses/by/4.0/.

          Categories
          Research Articles

          Comments

          Comment on this article