40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The extracellular matrix (ECM) is a major component of tumors and a significant contributor to cancer progression. In this study, we use proteomics to investigate the ECM of human mammary carcinoma xenografts and show that primary tumors of differing metastatic potential differ in ECM composition. Both tumor cells and stromal cells contribute to the tumor matrix and tumors of differing metastatic ability differ in both tumor- and stroma-derived ECM components. We define ECM signatures of poorly and highly metastatic mammary carcinomas and these signatures reveal up-regulation of signaling pathways including TGFβ and VEGF. We further demonstrate that several proteins characteristic of highly metastatic tumors (LTBP3, SNED1, EGLN1, and S100A2) play causal roles in metastasis, albeit at different steps. Finally we show that high expression of LTBP3 and SNED1 correlates with poor outcome for ER /PR breast cancer patients. This study thus identifies novel biomarkers that may serve as prognostic and diagnostic tools.

          DOI: http://dx.doi.org/10.7554/eLife.01308.001

          eLife digest

          Metastasis is the process whereby tumor cells spread within the body and is the cause of most deaths from cancer. This complex process involves several steps: first the cancer cells invade the tissues that surround the tumor; second, the cancer cells enter the blood stream and travel throughout the body; and third, the cancer cells seed the growth of new tumors in distant organs.

          Within tissues, the extracellular matrix forms a complex scaffold of proteins that surrounds cells, to support and organize them: it also provides signals that control how much cells can multiply, how likely cells are to stick together or migrate, and even a cell’s chances of survival. Pathologists have used an accumulation of extracellular matrix proteins in tumors as a sign that the outcome of the disease will likely be unfavorable for a patient, and that treatment will be challenging. However, we still do not have a clear picture of the composition of the tumor extracellular matrix and we do not know all the details of how it affects tumor growth and metastasis.

          Now, Naba et al. have explored these questions by injecting different types of human breast tumor cells into mice. Some of the cells were capable of spreading throughout the body and were said to have a high ‘metastatic potential’; others were less capable of spreading and were said to have a low metastatic potential. Naba et al. then analyzed the proteins that made up the extracellular matrix of the tumors that grew in the mice. Some proteins were found in both types of tumor; whereas some proteins were only found in the tumors with low metastatic potential and some were only found in the highly metastatic tumors. Naba et al. also demonstrated that both cancer cells and non-cancer cells—which are also found within the tumors—contributed to the production of the extracellular matrix in the tumor. Moreover, and somewhat surprisingly, the contributions from the non-cancer cells in the two types of tumors were also different.

          Computational analysis predicted that the production of several extracellular matrix proteins in the highly metastatic tumors was under the control of signaling pathways that are involved in cancer progression. Furthermore, Naba et al. also demonstrated that several of the extracellular matrix proteins specific to highly metastatic tumors were required for the cancer to spread. These proteins are involved in different stages of the metastatic process, and some of them are commonly over-produced in tumors from patients with some of the worst chances of recovery.

          If similar results are consistently observed in clinical samples from humans, the work of Naba et al. could help doctors to discriminate between tumors that will spread and those that will not, which should lead to improved patient care. The proteins and pathways associated with the highly metastatic tumors could be also investigated as potential drug targets.

          DOI: http://dx.doi.org/10.7554/eLife.01308.002

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Microenvironmental regulation of metastasis.

          Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Stromal gene expression predicts clinical outcome in breast cancer.

            Although it is increasingly evident that cancer is influenced by signals emanating from tumor stroma, little is known regarding how changes in stromal gene expression affect epithelial tumor progression. We used laser capture microdissection to compare gene expression profiles of tumor stroma from 53 primary breast tumors and derived signatures strongly associated with clinical outcome. We present a new stroma-derived prognostic predictor (SDPP) that stratifies disease outcome independently of standard clinical prognostic factors and published expression-based predictors. The SDPP predicts outcome in several published whole tumor-derived expression data sets, identifies poor-outcome individuals from multiple clinical subtypes, including lymph node-negative tumors, and shows increased accuracy with respect to previously published predictors, especially for HER2-positive tumors. Prognostic power increases substantially when the predictor is combined with existing outcome predictors. Genes represented in the SDPP reveal the strong prognostic capacity of differential immune responses as well as angiogenic and hypoxic responses, highlighting the importance of stromal biology in tumor progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation between protein and mRNA abundance in yeast.

              We have determined the relationship between mRNA and protein expression levels for selected genes expressed in the yeast Saccharomyces cerevisiae growing at mid-log phase. The proteins contained in total yeast cell lysate were separated by high-resolution two-dimensional (2D) gel electrophoresis. Over 150 protein spots were excised and identified by capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein spots were quantified by metabolic labeling and scintillation counting. Corresponding mRNA levels were calculated from serial analysis of gene expression (SAGE) frequency tables (V. E. Velculescu, L. Zhang, W. Zhou, J. Vogelstein, M. A. Basrai, D. E. Bassett, Jr., P. Hieter, B. Vogelstein, and K. W. Kinzler, Cell 88:243-251, 1997). We found that the correlation between mRNA and protein levels was insufficient to predict protein expression levels from quantitative mRNA data. Indeed, for some genes, while the mRNA levels were of the same value the protein levels varied by more than 20-fold. Conversely, invariant steady-state levels of certain proteins were observed with respective mRNA transcript levels that varied by as much as 30-fold. Another interesting observation is that codon bias is not a predictor of either protein or mRNA levels. Our results clearly delineate the technical boundaries of current approaches for quantitative analysis of protein expression and reveal that simple deduction from mRNA transcript analysis is insufficient.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                11 March 2014
                2014
                : 3
                : e01308
                Affiliations
                [1 ]David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, United States
                [2 ]Howard Hughes Medical Institute, Massachusetts Institute of Technology , Cambridge, United States
                [3 ]Proteomics Platform, Broad Institute of MIT and Harvard , Cambridge, United States
                Rockefeller University , United States
                Rockefeller University , United States
                Author notes
                [* ]For correspondence: anaba@ 123456mit.edu (AN);
                [* ]For correspondence: rohynes@ 123456mit.edu (ROH)
                Article
                01308
                10.7554/eLife.01308
                3944437
                24618895
                60f41312-37a3-4fec-97c4-d0371b09d0b2
                Copyright © 2014, Naba et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 30 July 2013
                : 25 January 2014
                Funding
                Funded by: National Cancer Institute - Tumor Microenvironment Network
                Award ID: U54 CA126515/CA163109
                Award Recipient :
                Funded by: National Cancer Institute - David H. Koch Institute Support Grant
                Award ID: P30-CA14051
                Award Recipient :
                Funded by: Howard Hughes Medical Institute
                Award Recipient :
                Funded by: Broad Institute of MIT and Harvard
                Award Recipient :
                Funded by: Ludwig Center for Cancer Research
                Award Recipient :
                Funded by: NIH / National Research and Service Award
                Award Recipient :
                Funded by: National Cancer Center
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Cell Biology
                Human Biology and Medicine
                Custom metadata
                0.7
                Many extracellular matrix proteins that are up-regulated during breast tumor progression enhance metastasis, and some are prognostic indicators of poor survival.

                Life sciences
                extracellular matrix,tumor microenvironment,proteomics,breast cancer,metastasis,tumor stroma,human,mouse

                Comments

                Comment on this article