12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dark energy equation of state and anthropic selection

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a re-collapse of the local universe on a time-scale comparable to the lifetime of the sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          de Sitter Vacua in String Theory

          We outline the construction of metastable de Sitter vacua of type IIB string theory. Our starting point is highly warped IIB compactifications with nontrivial NS and RR three-form fluxes. By incorporating known corrections to the superpotential from Euclidean D-brane instantons or gaugino condensation, one can make models with all moduli fixed, yielding a supersymmetric AdS vacuum. Inclusion of a small number of anti-D3 branes in the resulting warped geometry allows one to uplift the AdS minimum and make it a metastable de Sitter ground state. The lifetime of our metastable de Sitter vacua is much greater than the cosmological timescale of 10^10 years. We also prove, under certain conditions, that the lifetime of dS space in string theory will always be shorter than the recurrence time.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters

            WMAP precision data enables accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat Lambda-dominated universe seeded by nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. With parameters fixed only by WMAP data, we can fit finer scale CMB measurements and measurements of large scle structure (galaxy surveys and the Lyman alpha forest). This simple model is also consistent with a host of other astronomical measurements. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements and Lyman alpha forest data to find the model's best fit cosmological parameters: h=0.71+0.04-0.03, Omega_b h^2=0.0224+-0.0009, Omega_m h^2=0.135+0.008-0.009, tau=0.17+-0.06, n_s(0.05/Mpc)=0.93+-0.03, and sigma_8=0.84+-0.04. WMAP's best determination of tau=0.17+-0.04 arises directly from the TE data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13.7+-0.2 Gyr. The data favors but does not require a slowly varying spectral index. By combining WMAP data with other astronomical data sets, we constrain the geometry of the universe, Omega_tot = 1.02 +- 0.02, the equation of state of the dark energy w = -1), and the energy density in stable neutrinos, Omega_nu h^2 < 0.0076 (95% confidence limit). For 3 degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quintessence, Cosmic Coincidence, and the Cosmological Constant

              Recent observations suggest that a large fraction of the energy density of the universe has negative pressure. One explanation is vacuum energy density; another is quintessence in the form of a scalar field slowly evolving down a potential. In either case, a key problem is to explain why the energy density nearly coincides with the matter density today. The densities decrease at different rates as the universe expands, so coincidence today appears to require that their ratio be set to a specific, infinitessimal value in the early universe. In this paper, we introduce the notion of a "tracker field", a form of quintessence, and show how it may explain the coincidence, adding new motivation for the quintessence scenario.
                Bookmark

                Author and article information

                Journal
                03 October 2003
                Article
                10.1103/PhysRevD.69.063521
                hep-th/0310034
                60fc7cee-ddac-4669-bc20-f10b47d38407
                History
                Custom metadata
                Phys.Rev.D69:063521,2004
                22 pages, 8 figs
                hep-th astro-ph gr-qc hep-ph

                Comments

                Comment on this article