178
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Food web assembly rules

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.

          Related collections

          Author and article information

          Journal
          2015-01-19
          2015-06-17
          Article
          1501.04497
          01e4a554-3b4b-4147-a05d-4b64ddd8798c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          6 figures
          q-bio.PE

          Evolutionary Biology
          Evolutionary Biology

          Comments

          Comment on this article