+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Immunohistochemical Localization of Fibrillin-1 Protein in the Cells of Chick Corneal and Conjunctival Epithelia during Pre- and Postnatal Development

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Fibrillin-1 protein is a microfibrillar glycoprotein component of the extracellular matrix, widely distributed in ocular connective tissues. In this work, we show for the first time the expression pattern of fibrillin-1 protein in the corneal and conjunctival epithelia and in stromal keratocytes during embryo development. After hatching, protein expression was maintained in the corneal epithelium cells and nonsecreting epithelium cells of the conjunctiva and disappeared in the stromal keratocytes. In the limbus region, the basal cells were negative, while superficial cells were positive for the antibody. The expression in corneal epithelial cells suggests a role for fibrillin in development and disease. Therefore, some basal cells of the limbus region do not show fibrillin-1 immunolocalization, and this may be correlated with stem cell or stem-like properties.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: found
          • Article: not found

          Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells

          In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."
            • Record: found
            • Abstract: not found
            • Article: not found

            Role of the pericorneal papillary structure in renewal of corneal epithelium.

              • Record: found
              • Abstract: found
              • Article: not found

              Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS)☆

              Liquid chromatography tandem mass spectrometry (LC/MS/MS) is replacing classical methods for steroid hormone analysis. It requires small sample volumes and has given rise to improved specificity and short analysis times. Its growth has been fueled by criticism of the validity of steroid analysis by older techniques, testosterone measurements being a prime example. While this approach is the gold-standard for measurement of individual steroids, and panels of such compounds, LC/MS/MS is of limited use in defining novel metabolomes. GC/MS, in contrast, is unsuited to rapid high-sensitivity analysis of specific compounds, but remains the most powerful discovery tool for defining steroid disorder metabolomes. Since the 1930s almost all inborn errors in steroidogenesis have been first defined through their urinary steroid excretion. In the last 30 years, this has been exclusively carried out by GC/MS and has defined conditions such as AME syndrome, glucocorticoid remediable aldosteronism (GRA) and Smith–Lemli–Opitz syndrome. Our recent foci have been on P450 oxidoreductase deficiency (ORD) and apparent cortisone reductase deficiency (ACRD). In contrast to LC/MS/MS methodology, a particular benefit of GC/MS is its non-selective nature; a scanned run will contain every steroid excreted, providing an integrated picture of an individual's metabolome. The “Achilles heel” of clinical GC/MS profiling may be data presentation. There is lack of familiarity with the multiple hormone metabolites excreted and diagnostic data are difficult for endocrinologists to comprehend. While several conditions are defined by the absolute concentration of steroid metabolites, many are readily diagnosed by ratios between steroid metabolites (precursor metabolite/product metabolite). Our work has led us to develop a simplified graphical representation of quantitative urinary steroid hormone profiles and diagnostic ratios.

                Author and article information

                Ophthalmic Res
                Ophthalmic Research
                S. Karger AG
                January 2009
                20 December 2008
                : 41
                : 2
                : 106-111
                Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense, Madrid, España
                187628 Ophthalmic Res 2009;41:106–111
                © 2008 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 5, References: 30, Pages: 6
                Original Paper


                Comment on this article