112
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-Genome Comparison Reveals Novel Genetic Elements That Characterize the Genome of Industrial Strains of Saccharomyces cerevisiae

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human intervention has subjected the yeast Saccharomyces cerevisiae to multiple rounds of independent domestication and thousands of generations of artificial selection. As a result, this species comprises a genetically diverse collection of natural isolates as well as domesticated strains that are used in specific industrial applications. However the scope of genetic diversity that was captured during the domesticated evolution of the industrial representatives of this important organism remains to be determined. To begin to address this, we have produced whole-genome assemblies of six commercial strains of S. cerevisiae (four wine and two brewing strains). These represent the first genome assemblies produced from S. cerevisiae strains in their industrially-used forms and the first high-quality assemblies for S. cerevisiae strains used in brewing. By comparing these sequences to six existing high-coverage S. cerevisiae genome assemblies, clear signatures were found that defined each industrial class of yeast. This genetic variation was comprised of both single nucleotide polymorphisms and large-scale insertions and deletions, with the latter often being associated with ORF heterogeneity between strains. This included the discovery of more than twenty probable genes that had not been identified previously in the S. cerevisiae genome. Comparison of this large number of S. cerevisiae strains also enabled the characterization of a cluster of five ORFs that have integrated into the genomes of the wine and bioethanol strains on multiple occasions and at diverse genomic locations via what appears to involve the resolution of a circular DNA intermediate. This work suggests that, despite the scrutiny that has been directed at the yeast genome, there remains a significant reservoir of ORFs and novel modes of genetic transmission that may have significant phenotypic impact in this important model and industrial species.

          Author Summary

          The yeast S. cerevisiae has been associated with human activity for thousands of years in industries such as baking, brewing, and winemaking. During this time, humans have effectively domesticated this microorganism, with different industries selecting for specific desirable phenotypic traits. This has resulted in the species S. cerevisiae comprising a genetically diverse collection of individual strains that are often suited to very specific roles (e.g. wine strains produce wine but not beer and vice versa). In order to understand the genetic differences that underpin these diverse industrial characteristics, we have sequenced the genomes of six industrial strains of S. cerevisiae that comprise four strains used in commercial wine production and two strains used in beer brewing. By comparing these genome sequences to existing S. cerevisiae genome sequences from laboratory, pathogenic, bioethanol, and “natural” isolates, we were able to identify numerous genetic differences among these strains including the presence of novel open reading frames and genomic rearrangements, which may provide the basis for the phenotypic differences observed among these strains.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Population genomics of domestic and wild yeasts

          Since the completion of the genome sequence of Saccharomyces cerevisiae in 19961,2, there has been an exponential increase in complete genome sequences accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions3,4, population structure5-8, and sexual versus asexual reproduction9,10. Less well understood at the whole genome level are the evolutionary processes acting within populations and species leading to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to four-fold or more coverage of the genome sequences of over seventy isolates of the baker's yeast, S. cerevisiae, and its closest relative, S. paradoxus. We examine variation in gene content, SNPs, indels, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. Interestingly, S. paradoxus populations are well delineated along geographic boundaries while the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.

            Yeasts are predominant in the ancient and complex process of winemaking. In spontaneous fermentations, there is a progressive growth pattern of indigenous yeasts, with the final stages invariably being dominated by the alcohol-tolerant strains of Saccharomyces cerevisiae. This species is universally known as the 'wine yeast' and is widely preferred for initiating wine fermentations. The primary role of wine yeast is to catalyze the rapid, complete and efficient conversion of grape sugars to ethanol, carbon dioxide and other minor, but important, metabolites without the development of off-flavours. However, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing quest for specialized wine yeast strains possessing a wide range of optimized, improved or novel oenological properties. This review highlights the wealth of untapped indigenous yeasts with oenological potential, the complexity of wine yeasts' genetic features and the genetic techniques often used in strain development. The current status of genetically improved wine yeasts and potential targets for further strain development are outlined. In light of the limited knowledge of industrial wine yeasts' complex genomes and the daunting challenges to comply with strict statutory regulations and consumer demands regarding the future use of genetically modified strains, this review cautions against unrealistic expectations over the short term. However, the staggering potential advantages of improved wine yeasts to both the winemaker and consumer in the third millennium are pointed out. Copyright 2000 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118.

              Saccharomyces cerevisiae has been used for millennia in winemaking, but little is known about the selective forces acting on the wine yeast genome. We sequenced the complete genome of the diploid commercial wine yeast EC1118, resulting in an assembly of 31 scaffolds covering 97% of the S288c reference genome. The wine yeast differed strikingly from the other S. cerevisiae isolates in possessing 3 unique large regions, 2 of which were subtelomeric, the other being inserted within an EC1118 chromosome. These regions encompass 34 genes involved in key wine fermentation functions. Phylogeny and synteny analyses showed that 1 of these regions originated from a species closely related to the Saccharomyces genus, whereas the 2 other regions were of non-Saccharomyces origin. We identified Zygosaccharomyces bailii, a major contaminant of wine fermentations, as the donor species for 1 of these 2 regions. Although natural hybridization between Saccharomyces strains has been described, this report provides evidence that gene transfer may occur between Saccharomyces and non-Saccharomyces species. We show that the regions identified are frequent and differentially distributed among S. cerevisiae clades, being found almost exclusively in wine strains, suggesting acquisition through recent transfer events. Overall, these data show that the wine yeast genome is subject to constant remodeling through the contribution of exogenous genes. Our results suggest that these processes are favored by ecologic proximity and are involved in the molecular adaptation of wine yeasts to conditions of high sugar, low nitrogen, and high ethanol concentrations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                February 2011
                February 2011
                3 February 2011
                : 7
                : 2
                : e1001287
                Affiliations
                [1 ]The Australian Wine Research Institute, Adelaide, Australia
                [2 ]454 Life Sciences, A Roche Company, Branford, Connecticut, United States of America
                Stanford University, United States of America
                Author notes

                ¤a: Current address: Ion Torrent Systems, Guilford, Connecticut, United States of America

                ¤b: Current address: Pall Corporation, Port Washington, New York, United States of America

                Conceived and designed the experiments: ARB JPA ISP ME PJC. Performed the experiments: BAD DR AHF. Analyzed the data: ARB. Wrote the paper: ARB PJC.

                Article
                10-PLGE-RA-3730R3
                10.1371/journal.pgen.1001287
                3033381
                21304888
                61131432-add4-4a78-9ccb-7a99814a7ecc
                Borneman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 July 2010
                : 30 December 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Microbial Evolution and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article