+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Cell and Tissue Responses to Cross-Linked Hyaluronic Acid in Low-Grade Inflammatory Conditions


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Hyaluronic acid (HA), used in a variety of medical applications, is associated in rare instances to long-term adverse effects. Although the aetiology of these events is unknown, a number of hypotheses have been proposed, including low molecular weight of HA (LMW-HA) in the filler products. We hypothesized that cross-linked HA and its degradation products, in a low-grade inflammatory microenvironment, could impact immune responses that could affect cell behaviours in the dermis. Using two different cross-linking technologies VYC-15L and HYC-24L+, and their hyaluronidase-induced degradation products, we observed for nondegraded HA, VYC-15L and HYC-24L+, a moderate and transient increase in IL-1 β, TNF- α in M1 macrophages under low-grade inflammatory conditions. Endothelial cells and fibroblasts were preconditioned using inflammatory medium produced by M1 macrophages. 24 h after LMW-HA fragments and HA stimulation, no cytokine was released in these preconditioned cells. To further characterize HA responses, we used a novel in vivo murine model exhibiting a systemic low-grade inflammatory phenotype. The intradermal injection of VYC-15L and its degradation products induced an inflammation and cell infiltration into the skin that was more pronounced than those by HYC-24L+. This acute cutaneous inflammation was likely due to mechanical effects due to filler injection and tissue integration rather than its biological effects on inflammation. VYC-15L and its degradation product potentiated microvascular response to acetylcholine in the presence of a low-grade inflammation. The different responses with 2D cell models and mouse model using the two tested cross-linking HA technologies showed the importance to use integrative complex model to better understand the effects of HA products according to inflammatory state.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: found

          The Hallmarks of Aging

          Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects. Copyright © 2013 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Hyaluronan as an immune regulator in human diseases.

            Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
              • Record: found
              • Abstract: found
              • Article: not found

              Oligosaccharides of Hyaluronan Activate Dendritic Cells via Toll-like Receptor 4

              Low molecular weight fragmentation products of the polysaccharide of Hyaluronic acid (sHA) produced during inflammation have been shown to be potent activators of immunocompetent cells such as dendritic cells (DCs) and macrophages. Here we report that sHA induces maturation of DCs via the Toll-like receptor (TLR)-4, a receptor complex associated with innate immunity and host defense against bacterial infection. Bone marrow–derived DCs from C3H/HeJ and C57BL/10ScCr mice carrying mutant TLR-4 alleles were nonresponsive to sHA-induced phenotypic and functional maturation. Conversely, DCs from TLR-2–deficient mice were still susceptible to sHA. In accordance, addition of an anti–TLR-4 mAb to human monocyte–derived DCs blocked sHA-induced tumor necrosis factor α production. Western blot analysis revealed that sHA treatment resulted in distinct phosphorylation of p38/p42/44 MAP-kinases and nuclear translocation of nuclear factor (NF)-κB, all components of the TLR-4 signaling pathway. Blockade of this pathway by specific inhibitors completely abrogated the sHA-induced DC maturation. Finally, intravenous injection of sHA-induced DC emigration from the skin and their phenotypic and functional maturation in the spleen, again depending on the expression of TLR-4. In conclusion, this is the first report that polysaccharide degradation products of the extracellular matrix produced during inflammation might serve as an endogenous ligand for the TLR-4 complex on DCs.

                Author and article information

                Int J Inflam
                Int J Inflam
                International Journal of Inflammation
                26 August 2023
                : 2023
                : 3001080
                1Laboratoire Biologie Tissulaire et Ingénierie Thérapeutique, Centre national de la recherche scientifique (CNRS), UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
                2University of Lyon 1, UMR 5305, LBTI, 7 Passage du Vercors, F-69367 Lyon cedex 7, France
                3NOVOTEC, ZAC du Chêne Europarc, 11 Rue Edison, 69500 Bron, France
                4Allergan Aesthetics, An AbbVie Company, 2525 Dupont Dr., Irvine, CA 92612, USA
                Author notes

                Academic Editor: Istvan Boldogh

                Author information
                Copyright © 2023 Benjamin Sanchez et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 18 November 2022
                : 18 July 2023
                : 17 August 2023
                Funded by: Allergan
                Funded by: AbbVie
                Funded by: Centre National de la Recherche Scientifique
                Award ID: 147569/2017
                Research Article



                Comment on this article