4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection.

      IEEE transactions on bio-medical engineering
      Algorithms, Diagnosis, Computer-Assisted, methods, Electroencephalography, Epilepsy, diagnosis, Expert Systems, Humans, Neural Networks (Computer), Pattern Recognition, Automated, Principal Component Analysis, Reproducibility of Results, Sensitivity and Specificity, Signal Processing, Computer-Assisted

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel principal component analysis (PCA)-enhanced cosine radial basis function neural network classifier is presented. The two-stage classifier is integrated with the mixed-band wavelet-chaos methodology, developed earlier by the authors, for accurate and robust classification of electroencephalogram (EEGs) into healthy, ictal, and interictal EEGs. A nine-parameter mixed-band feature space discovered in previous research for effective EEG representation is used as input to the two-stage classifier. In the first stage, PCA is employed for feature enhancement. The rearrangement of the input space along the principal components of the data improves the classification accuracy of the cosine radial basis function neural network (RBFNN) employed in the second stage significantly. The classification accuracy and robustness of the classifier are validated by extensive parametric and sensitivity analysis. The new wavelet-chaos-neural network methodology yields high EEG classification accuracy (96.6%) and is quite robust to changes in training data with a low standard deviation of 1.4%. For epilepsy diagnosis, when only normal and interictal EEGs are considered, the classification accuracy of the proposed model is 99.3%. This statistic is especially remarkable because even the most highly trained neurologists do not appear to be able to detect interictal EEGs more than 80% of the times.

          Related collections

          Author and article information

          Comments

          Comment on this article