8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overwintering fires rising in eastern Siberia

      , , , ,
      Environmental Research Letters
      IOP Publishing

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overwintering fires are a historically rare phenomenon but may become more prevalent in the warming boreal region. Overwintering fires have been studied to a limited extent in boreal North America; however, their role and contribution to fire regimes in Siberia are still largely unknown. Here, for the first time, we quantified the proportion of overwintering fires and their burned areas in Yakutia, eastern Siberia, using fire, lightning, and infrastructure data. Our results demonstrate that overwintering fires contributed to 3.2 ± 0.6% of the total burned area during 2012–2020 over Yakutia, compared to 31.4 ± 6.8% from lightning ignitions and 51.0 ± 6.9% from anthropogenic ignitions (14.4% of the burned area had unknown cause), but they accounted for 7.5 ± 0.7% of the burned area in the extreme fire season of 2020. In addition, overwintering fires have different spatiotemporal characteristics than lightning and anthropogenic fires, suggesting that overwintering fires need to be incorporated into fire models as a separate fire category when modelling future boreal fire regimes.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of fire on properties of forest soils: a review.

          Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.
            • Record: found
            • Abstract: not found
            • Article: not found

            Large forest fires in Canada, 1959–1997

              • Record: found
              • Abstract: not found
              • Article: not found

              Emission of trace gases and aerosols from biomass burning

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Research Letters
                Environ. Res. Lett.
                IOP Publishing
                1748-9326
                March 14 2022
                April 01 2022
                March 14 2022
                April 01 2022
                : 17
                : 4
                : 045005
                Article
                10.1088/1748-9326/ac59aa
                61218075-d3e2-4524-8733-51e42034cf5b
                © 2022

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article

                Related Documents Log