1
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mineralocorticoid receptor status in the human brain after dexamethasone treatment: a single case study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Synthetic glucocorticoids like dexamethasone can cause severe neuropsychiatric effects. They preferentially bind to the glucocorticoid receptor (GR) over the mineralocorticoid receptor (MR). High dosages result in strong GR activation but likely also result in lower MR activation based on GR-mediated negative feedback on cortisol levels. Therefore, reduced MR activity may contribute to dexamethasone-induced neuropsychiatric symptoms.

          Objective

          In this single case study, we evaluate whether dexamethasone leads to reduced MR activation in the human brain. Brain tissue of an 8-year-old brain tumor patient was used, who suffered chronically from dexamethasone-induced neuropsychiatric symptoms and deceased only hours after a high dose of dexamethasone.

          Main outcome measures

          The efficacy of dexamethasone to induce MR activity was determined in HEK293T cells using a reporter construct. Subcellular localization of GR and MR was assessed in paraffin-embedded hippocampal tissue from the patient and two controls. In hippocampal tissue from the patient and eight controls, mRNA of MR/GR target genes was measured.

          Results

          In vitro, dexamethasone stimulated MR with low efficacy and low potency. Immunofluorescence showed the presence of both GR and MR in the hippocampal cell nuclei after dexamethasone exposure. The putative MR target gene JDP2 was consistently expressed at relatively low levels in the dexamethasone-treated brain samples. Gene expression showed substantial variation in MR/GR target gene expression in two different hippocampus tissue blocks from the same patient.

          Conclusions

          Dexamethasone may induce MR nuclear translocation in the human brain. Conclusions on in vivo effects on gene expression in the brain await the availability of more tissue of dexamethasone-treated patients.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions.

          The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress and the brain: from adaptation to disease.

            In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A users guide to HPA axis research.

              Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology.
                Bookmark

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                11 February 2022
                01 March 2022
                : 11
                : 3
                : e210425
                Affiliations
                [1 ]Division of Endocrinology, Department of Medicine , Leiden University Medical Center, Leiden, The Netherlands
                [2 ]Einthoven Laboratory for Experimental Vascular Medicine , Leiden University Medical Center, Leiden, The Netherlands
                [3 ]Department of Pediatric Endocrinology , Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
                [4 ]Department of Pediatric Neuro-Oncology , Prinses Máxima Centrum, Utrecht, The Netherlands
                Author notes
                Correspondence should be addressed to A-S C A M Koning or O C Meijer: a.c.a.koning@ 123456lumc.nl or o.c.meijer@ 123456lumc.nl
                Author information
                http://orcid.org/0000-0001-8809-2576
                Article
                EC-21-0425
                10.1530/EC-21-0425
                8942311
                35148274
                612371c3-b0a7-4050-aeb5-828dbc85ca52
                © The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 26 January 2022
                : 11 February 2022
                Categories
                Research

                mineralocorticoid receptor,dexamethasone,neuropsychiatric adverse effects,cortisol,human pediatric brain

                Comments

                Comment on this article