33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integrative Genomics in Combination with RNA Interference Identifies Prognostic and Functionally Relevant Gene Targets for Oral Squamous Cell Carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In oral squamous cell carcinoma (OSCC), metastasis to lymph nodes is associated with a 50% reduction in 5-year survival. To identify a metastatic gene set based on DNA copy number abnormalities (CNAs) of differentially expressed genes, we compared DNA and RNA of OSCC cells laser-microdissected from non-metastatic primary tumors (n = 17) with those from lymph node metastases (n = 20), using Affymetrix 250K Nsp single-nucleotide polymorphism (SNP) arrays and U133 Plus 2.0 arrays, respectively. With a false discovery rate (FDR)<5%, 1988 transcripts were found to be differentially expressed between primary and metastatic OSCC. Of these, 114 were found to have a significant correlation between DNA copy number and gene expression (FDR<0.01). Among these 114 correlated transcripts, the corresponding genomic regions of each of 95 transcripts had CNAs differences between primary and metastatic OSCC (FDR<0.01). Using an independent dataset of 133 patients, multivariable analysis showed that the OSCC–specific and overall mortality hazards ratio (HR) for patients carrying the 95-transcript signature were 4.75 (95% CI: 2.03–11.11) and 3.45 (95% CI: 1.84–6.50), respectively. To determine the degree by which these genes impact cell survival, we compared the growth of five OSCC cell lines before and after knockdown of over-amplified transcripts via a high-throughput siRNA–mediated screen. The expression-knockdown of 18 of the 26 genes tested showed a growth suppression ≥30% in at least one cell line (P<0.01). In particular, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC, and the growth suppression was likely caused by increase in apoptosis. Further investigation is warranted to examine the biological role of these genes in OSCC progression and their therapeutic potentials.

          Author Summary

          Neck lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). To identify genes associated with this critical step of OSCC progression, we compared DNA copy number aberrations and gene expression differences between tumor cells found in metastatic lymph nodes versus those in non-metastatic primary tumors. We identified 95 transcripts (87 genes) with metastasis-specific genome abnormalities and gene expression. Tested in an independent cohort of 133 OSCC patients, the 95 gene signature was an independent risk factor of disease-specific and overall death, suggesting a disease progression phenotype. We knocked down the expression of over-amplified genes in five OSCC cell lines. Knockdown of 18 of the 26 tested genes suppressed the cell growth in at least one cell line. Interestingly, cell lines derived from late-stage OSCC were more sensitive to the knockdown of G3BP1 than cell lines derived from early-stage OSCC. The knockdown of G3BP1 increased programmed cell death in the p53-mutant but not wild-type OSCC cell lines. Taken together, we demonstrate that CNA–associated transcripts differentially expressed in carcinoma cells with an aggressive phenotype (i.e., metastatic to lymph nodes) can be biomarkers with both prognostic information and functional relevance. Moreover, results suggest that G3BP1 is a potential therapeutic target against late-stage p53-negative OSCC.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.

          Systematic analyses of cancer genomes promise to unveil patterns of genetic alterations linked to the genesis and spread of human cancers. High-density single-nucleotide polymorphism (SNP) arrays enable detailed and genome-wide identification of both loss-of-heterozygosity events and copy-number alterations in cancer. Here, by integrating SNP array-based genetic maps with gene expression signatures derived from NCI60 cell lines, we identified the melanocyte master regulator MITF (microphthalmia-associated transcription factor) as the target of a novel melanoma amplification. We found that MITF amplification was more prevalent in metastatic disease and correlated with decreased overall patient survival. BRAF mutation and p16 inactivation accompanied MITF amplification in melanoma cell lines. Ectopic MITF expression in conjunction with the BRAF(V600E) mutant transformed primary human melanocytes, and thus MITF can function as a melanoma oncogene. Reduction of MITF activity sensitizes melanoma cells to chemotherapeutic agents. Targeting MITF in combination with BRAF or cyclin-dependent kinase inhibitors may offer a rational therapeutic avenue into melanoma, a highly chemotherapy-resistant neoplasm. Together, these data suggest that MITF represents a distinct class of 'lineage survival' or 'lineage addiction' oncogenes required for both tissue-specific cancer development and tumour progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft

            Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumor progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumor, a brain metastasis, and a xenograft derived from the primary tumor. The metastasis contained two de novo mutations and a large deletion not present in the primary tumor, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumor mutations, and displayed a mutation enrichment pattern that paralleled the metastasis (16 of 20 genes). Two overlapping large deletions, encompassing CTNNA1, were present in all three tumor samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared to the primary tumor suggest that secondary tumors may arise from a minority of cells within the primary.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Linking the p53 tumor suppressor pathway to somatic cell reprogramming

              Reprogramming somatic cells to induced pluripotent stem (iPS) cells has been accomplished by expressing pluripotency factors and oncogenes1–8, but the low frequency and tendency to induce malignant transformation9 compromise the clinical utility of this powerful approach. We address both issues by investigating the mechanisms limiting reprogramming efficiency in somatic cells. We show that reprogramming factors can activate the p53 pathway. Reducing signaling to p53 by expressing a mutated version of one of its negative regulators, by deleting or silencing p53 or its target gene, p21, or by antagonizing apoptosis enhanced three factor (Oct4/Sox2/Klf4)-mediated reprogramming of mouse fibroblasts. Notably, decreasing p53 protein levels enabled fibroblasts to give rise to iPS cells capable of generating germline transmitting chimeric mice using only Oct4 and Sox2. Furthermore, silencing of p53 significantly increased the reprogramming efficiency of human somatic cells. These results provide insights into reprogramming mechanisms and suggest new routes to more efficient reprogramming while minimizing the use of oncogenes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                17 January 2013
                : 9
                : 1
                : e1003169
                Affiliations
                [1 ]Department of Otolaryngology–Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
                [2 ]Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [3 ]Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [4 ]Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
                [5 ]Department of Pathology, University of Washington, Seattle, Washington, United States of America
                [6 ]Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
                [7 ]Surgery and Perioperative Care Service, VA Puget Sound Health Care System, Seattle, Washington, United States of America
                Stanford University School of Medicine, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CX PW EM. Performed the experiments: CX EM. Analyzed the data: YL YZ WF MPU PL DRD. Contributed reagents/materials/analysis tools: PW JRH NDF LPZ SMS CC EM. Wrote the paper: CX EM SMS CC PW.

                Article
                PGENETICS-D-12-01275
                10.1371/journal.pgen.1003169
                3547824
                23341773
                61253e17-91ae-4ecc-90f5-7151b2db6c6c
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 May 2012
                : 29 October 2012
                Page count
                Pages: 13
                Funding
                This work was supported in part by grants 5KL2RR025015-03 from National Center for Research Resources, National Institutes of Health (NIH); Amos Medical Faculty Development Program Award from The Robert Wood Johnson Foundation; Early Physician-Scientist Career Development Award from the Howard Hughes Medical Institute; R01CA095419 from the National Cancer Institute, NIH; Small Grants Translational Research Projects Award from the Institute of Translational Health Sciences, University of Washington, supported by grant UL1RR025014 from the National Center for Research Resources, NIH; center funds from the Department of Otolaryngology–Head and Neck Surgery, University of Washington; and by resources from and use of facilities at the VA Puget Sound Health Care System, Fred Hutchinson Cancer Research Center, University of Washington Medical Center and Harborview Medical Center, Seattle, Washington. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genomics
                Functional Genomics
                Molecular Cell Biology
                Gene Expression
                DNA modification
                Medicine
                Oncology
                Basic Cancer Research
                Metastasis

                Genetics
                Genetics

                Comments

                Comment on this article