+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What Do We Know about Opioids and the Kidney?

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Evidence suggests a link between opioid use and kidney disease. This review summarizes the known renal manifestations of opioid use including its role in acute and chronic kidney injury. Both the direct and indirect effects of the drug, and the context which leads to the development of renal failure, are explored. While commonly used safely for pain control and anesthesia in those with kidney disease, the concerns with respect to side effects and toxicity of opioids are addressed. This is especially relevant with the worldwide increase in the use of opioids for medical and recreational use.

          Related collections

          Most cited references 80

          • Record: found
          • Abstract: found
          • Article: not found

          Rhabdomyolysis: an evaluation of 475 hospitalized patients.

          Rhabdomyolysis is a common and potentially lethal clinical syndrome that results from acute muscle fiber necrosis with leakage of muscle constituents into blood. Myoglobinuria is the most significant consequence, leading to acute renal failure (ARF) in 15%-33% of patients with rhabdomyolysis. Rhabdomyolysis occurs from inherited diseases, toxins, muscle compression or overexertion, or inflammatory processes, among other disorders. In some cases, no cause is found. We describe 475 patients from the Johns Hopkins Hospital inpatient records between January 1993 and December 2001 for the following discharge diagnosis codes: myoglobinuria, rhabdomyolysis, myopathy, toxic myopathy, malignant hyperthermia, neuroleptic malignant syndrome, and polymyositis. Of 1362 patients, 475 patients with an acute neuromuscular illness with serum creatine kinase (CK) more than 5 times the upper limit of normal (>975 IU/L) were included. Patients with recent myocardial infarction or stroke were excluded. The etiology was assigned by chart review. For all, the highest values of serum CK, serum creatinine and urine myoglobin, hemoglobin, and red blood cells were recorded. Forty-one patients had muscle biopsy within at least 2 months from the onset of rhabdomyolysis.Of the 475 patients, 151 were female and 324 were male (median age, 47 yr; range, 4-95 yr). Exogenous toxins were the most common cause of rhabdomyolysis, with illicit drugs, alcohol, and prescribed drugs responsible for 46%. Among the medical drugs, antipsychotics, statins, zidovudine, colchicine, selective serotonin reuptake inhibitors, and lithium were the most frequently involved. In 60% of all cases, multiple factors were present. In 11% of all cases, rhabdomyolysis was recurrent. Underlying myopathy or muscle metabolic defects were responsible for 10% of cases, in which there was a high percentage of recurrence, only 1 etiologic factor, and a low incidence of ARF. In 7%, no cause was found. ARF was present in 218 (46%) patients, and 16 died (3.4%). A linear correlation was found between CK and creatinine and between multiple factors and ARF, but there was no correlation between ARF and death or between multiple factors and death. Urine myoglobin detected by dipstick/ultrafiltration was positive in only 19%. Toxins are the most frequent cause of rhabdomyolysis, but in most cases more than 1 etiologic factor was present. Patients using illicit drugs or on prescribed polytherapy are at risk for rhabdomyolysis. The absence of urine myoglobin, by qualitative assay, does not exclude rhabdomyolysis. With appropriate care, death is rare.
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical pharmacology of tramadol.

            Tramadol, a centrally acting analgesic structurally related to codeine and morphine, consists of two enantiomers, both of which contribute to analgesic activity via different mechanisms. (+)-Tramadol and the metabolite (+)-O-desmethyl-tramadol (M1) are agonists of the mu opioid receptor. (+)-Tramadol inhibits serotonin reuptake and (-)-tramadol inhibits norepinephrine reuptake, enhancing inhibitory effects on pain transmission in the spinal cord. The complementary and synergistic actions of the two enantiomers improve the analgesic efficacy and tolerability profile of the racemate. Tramadol is available as drops, capsules and sustained-release formulations for oral use, suppositories for rectal use and solution for intramuscular, intravenous and subcutaneous injection. After oral administration, tramadol is rapidly and almost completely absorbed. Sustained-release tablets release the active ingredient over a period of 12 hours, reach peak concentrations after 4.9 hours and have a bioavailability of 87-95% compared with capsules. Tramadol is rapidly distributed in the body; plasma protein binding is about 20%. Tramadol is mainly metabolised by O- and N-demethylation and by conjugation reactions forming glucuronides and sulfates. Tramadol and its metabolites are mainly excreted via the kidneys. The mean elimination half-life is about 6 hours. The O-demethylation of tramadol to M1, the main analgesic effective metabolite, is catalysed by cytochrome P450 (CYP) 2D6, whereas N-demethylation to M2 is catalysed by CYP2B6 and CYP3A4. The wide variability in the pharmacokinetic properties of tramadol can partly be ascribed to CYP polymorphism. O- and N-demethylation of tramadol as well as renal elimination are stereoselective. Pharmacokinetic-pharmacodynamic characterisation of tramadol is difficult because of differences between tramadol concentrations in plasma and at the site of action, and because of pharmacodynamic interactions between the two enantiomers of tramadol and its active metabolites. The analgesic potency of tramadol is about 10% of that of morphine following parenteral administration. Tramadol provides postoperative pain relief comparable with that of pethidine, and the analgesic efficacy of tramadol can further be improved by combination with a non-opioid analgesic. Tramadol may prove particularly useful in patients with a risk of poor cardiopulmonary function, after surgery of the thorax or upper abdomen and when non-opioid analgesics are contraindicated. Tramadol is an effective and well tolerated agent to reduce pain resulting from trauma, renal or biliary colic and labour, and also for the management of chronic pain of malignant or nonmalignant origin, particularly neuropathic pain. Tramadol appears to produce less constipation and dependence than equianalgesic doses of strong opioids.
              • Record: found
              • Abstract: not found
              • Article: not found

              Clinical Pharmacology of Tramadol


                Author and article information

                Role: Academic Editor
                Int J Mol Sci
                Int J Mol Sci
                International Journal of Molecular Sciences
                22 January 2017
                January 2017
                : 18
                : 1
                Department of Internal Medicine, State University of New York at Downstate, Brooklyn, New York, NY 11203, USA; sabujacob111@ (J.S.); elifriedmn@ (E.A.F.); moro.salifu@ (M.S.)
                Author notes
                [* ]Correspondence: marynephrology@ ; Tel.: +1-917-301-9860
                © 2017 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (


                Molecular biology

                pharmacokinetics, renal failure, opioids


                Comment on this article