34
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Protective Effects of Relaxin against Cisplatin-Induced Nephrotoxicity in Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Cisplatin (CDDP)-induced acute kidney injury (AKI) involves pro-inflammatory responses, apoptosis of renal tubular epithelial cells and vascular damage. AKI increases the risk of chronic kidney disease. Relaxin (RLX) has anti-apoptotic and anti-fibrosis properties. The aim of this study was to investigate the effects of RLX on CDDP-induced nephrotoxicity. Methods: We investigated the mitigating effects of RLX based on the etiopathology of AKI induced by CDDP, and also the anti-fibrotic effect of RLX on renal fibrosis after AKI. In the short-term experiments, rats were divided into the control group, CDDP group, and CDDP+RLX group. In the latter group, RLX was infused for 5 or 14 days using an implanted osmotic minipump. CDDP was injected intraperitoneally (6 mg/kg) after RLX or saline infusion. At 5 and 14 days post-CDDP, the kidneys were removed for analysis. The effect of RLX on renal fibrosis after AKI was evaluated at 6 weeks post-CDDP. Results: In short-term experiments, CDDP transiently increased plasma creatinine and blood urea nitrogen with peaks at day 5, and RLX prevented such rises. Semiquantitative analysis of the histological lesions indicated marked structural damage and apoptotic cells in the CDDP group, with the lesions being reduced by RLX treatment. Overexpression of Bax, interleukin-6 and tumor necrosis factor-α observed in the kidneys of the CDDP group was reduced in the CDDP+RLX group. In the long-term experiments, RLX significantly reduced renal fibrosis compared with the CDDP group. Conclusions: The results suggested that RLX provided protection against CDDP-induced AKI and subsequent fibrosis by reducing apoptosis and inflammation.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney.

          We have demonstrated that caspase-1-deficient (caspase-1(-/-)) mice are functionally and histologically protected against cisplatin-induced acute renal failure (ARF). Caspase-1 exerts proinflammatory effects via the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil recruitment. We sought to determine the role of the cytokines IL-1beta, IL-18, and IL-6 and neutrophil recruitment in cisplatin-induced ARF. We first examined IL-1beta; renal IL-1beta increased nearly 2-fold in cisplatin-induced ARF and was reduced in the caspase-1(-/-) mice. However, inhibition with IL-1 receptor antagonist (IL-1Ra) did not attenuate cisplatin-induced ARF. Renal IL-18 increased 2.5-fold; however, methods to inhibit IL-18 using IL-18 antiserum and transgenic mice that overproduce IL-18-binding protein (a natural inhibitor of IL-18) did not protect. Renal IL-6 increased 3-fold; however, IL-6-deficient (IL-6(-/-)) mice still developed cisplatin-induced ARF. We next examined neutrophils; blood neutrophils increased dramatically after cisplatin injection; however, prevention of peripheral neutrophilia and renal neutrophil infiltration with the neutrophil-depleting antibody RB6-8C5 did not protect against cisplatin-induced ARF. In summary, our data demonstrated that cisplatin-induced ARF is associated with increases in the cytokines IL-1beta, IL-18, and IL-6 and neutrophil infiltration in the kidney. However, inhibition of IL-1beta, IL-18, and IL-6 or neutrophil infiltration in the kidney is not sufficient to prevent cisplatin-induced ARF.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platinum nephrotoxicity.

            Platinum coordination complexes have recently been introduced in cancer chemotherapy with considerable success. However, significant nephrotoxicity has emerged as a factor that limits the therapeutic usefulness of these compounds. In this article we review the available knowledge on platinum nephrotoxicity and its prevention that has been derived from both toxicologic studies in animals and clinical trials in human subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation and pathological role of p53 in cisplatin nephrotoxicity.

              Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, its use is limited by side effects in normal tissues, particularly the kidneys. Recent studies, using both in vitro and in vivo experimental models, have suggested a critical role for p53 in cisplatin nephrotoxicity. The signaling pathways upstream and downstream of p53 are being investigated and related to renal cell injury and death. Along with the mechanistic studies, renoprotective approaches targeting p53 have been suggested. Further research may integrate p53 signaling with other nephrotoxic signaling pathways, providing a comprehensive understanding of cisplatin nephrotoxicity and leading to the development of effective renoprotective strategies during cancer therapy.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2014
                December 2014
                11 November 2014
                : 128
                : 1-2
                : 9-20
                Affiliations
                aDepartment of Clinical Nutrition, School of Food and Nutritional Sciences, University of Shizuoka, and bDepartment of Applied Biological Sciences, Shizuoka University, Shizuoka, and cDepartment of Medicine, Yaizu Municipal General Hospital, Yaizu, Japan
                Author notes
                *Naoki Ikegaya, MD, PhD, Department of Medicine, Yaizu Municipal General Hospital, 1000, Dohbara, Yaizu, Shizuoka 425-8505 (Japan), E-Mail ni100330@cy.tnc.ne.jp
                Article
                365852 Nephron Exp Nephrol 2014;128:9-20
                10.1159/000365852
                25403022
                61373f72-760f-46a6-b90f-df80c6873c9b
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 08 January 2014
                : 10 July 2014
                Page count
                Figures: 8, Tables: 3, Pages: 12
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Acute kidney injury,Renal fibrosis,Cisplatin,Relaxin,Apoptosis
                Cardiovascular Medicine, Nephrology
                Acute kidney injury, Renal fibrosis, Cisplatin, Relaxin, Apoptosis

                Comments

                Comment on this article