13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MET meet adaptors: functional and structural implications in downstream signalling mediated by the Met receptor.

      Molecular and Cellular Biochemistry
      Animals, Humans, Protein Binding, Protein Structure, Tertiary, Proto-Oncogene Proteins c-met, chemistry, metabolism, Signal Transduction, Structure-Activity Relationship

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tyrosin kinase Met receptor regulates multiple cellular events, ranging from cell motility and angiogenesis to morphological differentiation and tissue regeneration. To conduce these activities, the cytoplasmic C-terminal region of this receptor acts as a docking site for multiple protein substrates, including Grb 2, Gab 1, STAT 3, Shc, SHIP-1 and Src. These substrates are characterised by the presence of multiple domains, including the PH, PTB, SH 2 and SH 3 domains, which directly interact with the multisubstrate C-terminal region of Met. How this receptor recognises and binds a specific substrate in a space-temporal mode is a central question in cell signalling. The recently solved crystal structure of the tyrosine kinase domain of the Met receptor and that of domains of diverse Met substrates provides the molecular framework to understand Met substrate specificity. This structural information also gives new insights on the plasticity of Met signalling and the implications of Met deregulation in tumorigenic processes. In the light of these advances, the present work discusses the molecular basis of Met-substrate recognition and its functional implications in signalling events mediated by this pleiotropic receptor. (Mol Cell Biochem 276: 143-148, 2005).

          Related collections

          Author and article information

          Comments

          Comment on this article