+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Incidence and Survival of urothelial carcinoma of the urinary bladder in Norway 1981-2014

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Urothelial carcinoma of the urinary bladder (UCB) is the 4 th most common cancer type in men in developed countries, and tumor recurrence or progression occurs in more than half of the patients. Previous studies report contradictory trends in incidence and survival over the past decades. This article describes the trends of UCB incidence and survival from 1981 to 2014, including both invasive and non-invasive UCB using data from the Cancer Registry of Norway.


          In Norway, 33,761 patients were diagnosed with UCB between 1981 and 2014. Incidence and 5-year relative survival were calculated, stratified by sex, morphology, stage, age and diagnostic period. Age-period-cohort models were used to distinguish period- and cohort effects. Temporal trends were summarized by calculating the average absolute annual change in incidence and relative survival allowing for breaks in this trend by incorporating a joinpoint analysis. Excess mortality rate ratios (EMRR) quantify the relative risks by using a proportional excess hazard model.


          The incidence of UCB in men increased from 18.5 (1981-85) to 21.1 (1991-95) per 100 000 person-years and was rather stable thereafter (1996–2014). The incidence rates of UCB were lower in women increasing linearly from 4.7 to 6.2 over the past 34 years ( p = 5.9 · 10 -7). These trends could be explained by an increase of the incidence rates of non-invasive tumors. Furthermore, the observed pattern seemed to represent a birth cohort effect. Five-year relative survival increased annually with 0.004 in men ( p = 1.3 · 10 -6) and 0.003 in women ( p = 4.5 · 10 -6). There is a significant increase over the past 34 years in survival of UCB in both genders for local tumors but not for advanced stages.


          Increasing and stable incidence trends mirror little improvement in primary and secondary prevention of UCB for more than three decades. Survival proportions increased only marginally. Thus, any changes in treatment and follow-up care did not lead to notable improvement with respect to survival of the patients. High estimates of preventable cases together with large recurrence rates of this particular cancer type, demand more research on prevention guidelines, diagnostic tools and treatment for UCB.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.

          Estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. We review the sources and methods used in compiling the national cancer incidence and mortality estimates, and briefly describe the key results by cancer site and in 20 large "areas" of the world. Overall, there were 14.1 million new cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths). © 2014 UICC.
            • Record: found
            • Abstract: found
            • Article: not found

            Permutation tests for joinpoint regression with applications to cancer rates.

            The identification of changes in the recent trend is an important issue in the analysis of cancer mortality and incidence data. We apply a joinpoint regression model to describe such continuous changes and use the grid-search method to fit the regression function with unknown joinpoints assuming constant variance and uncorrelated errors. We find the number of significant joinpoints by performing several permutation tests, each of which has a correct significance level asymptotically. Each p-value is found using Monte Carlo methods, and the overall asymptotic significance level is maintained through a Bonferroni correction. These tests are extended to the situation with non-constant variance to handle rates with Poisson variation and possibly autocorrelated errors. The performance of these tests are studied via simulations and the tests are applied to U.S. prostate cancer incidence and mortality rates. Copyright 2000 John Wiley & Sons, Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              Data quality at the Cancer Registry of Norway: an overview of comparability, completeness, validity and timeliness.

              To provide a comprehensive evaluation of the quality of the data collected on both solid and non-solid tumours at the Cancer Registry of Norway (CRN). Established quantitative and semi-quantitative methods were used to assess comparability, completeness, accuracy and timeliness of data for the period 1953-2005, with special attention to the registration period 2001-2005. The CRN coding and classification system by and large follows international standards, with some further subdivisions of morphology groupings performed in-house. The overall completeness was estimated at 98.8% for the registration period 2001-2005. There remains a variable degree of under-reporting particularly for haematological malignancies (C90-95) and tumours of the central nervous system (C70-72). For the same period, 93.8% of the cases were morphologically verified (site-specific range: 60.0-99.8%). The under-reporting in 2005 due to timely publication is estimated at 2.2% overall, based on the number of cases received at the registry during the following year. This review suggests the routines in place at the CRN yields comparable data that can be considered reasonably accurate, close-to-complete and timely, thereby justifying our policy of the reporting of annual incidence one year after the year of diagnosis.

                Author and article information

                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                13 October 2016
                13 October 2016
                : 16
                [1 ]Department of Research, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway
                [2 ]Department of Pathology, Vestre Viken Hospital Trust, Drammen, Norway
                [3 ]Department of Urology, Oslo University Hospital, Oslo, Norway
                [4 ]Department of Registration, Cancer Registry of Norway, Institute for Population-based Research, Oslo, Norway
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Research Article
                Custom metadata
                © The Author(s) 2016


                Comment on this article