26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Particulate Matter Exposure and Preterm Birth: Estimates of U.S. Attributable Burden and Economic Costs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States.

          Objectives:

          We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010.

          Methods:

          Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07–1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars.

          Results:

          An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43–9.66 B], of which $760 million were spent for medical care (SA: $362 M–1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States.

          Conclusions:

          PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy.

          Citation:

          Trasande L, Malecha P, Attina TM. 2016. Particulate matter exposure and preterm birth: estimates of U.S. attributable burden and economic costs. Environ Health Perspect 124:1913–1918; http://dx.doi.org/10.1289/ehp.1510810

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis.

            Low birth weight and preterm birth have a substantial public health impact. Studies examining their association with outdoor air pollution were identified using searches of bibliographic databases and reference lists of relevant papers. Pooled estimates of effect were calculated, heterogeneity was quantified, meta-regression was conducted and publication bias was examined. Sixty-two studies met the inclusion criteria. The majority of studies reported reduced birth weight and increased odds of low birth weight in relation to exposure to carbon monoxide (CO), nitrogen dioxide (NO(2)) and particulate matter less than 10 and 2.5 microns (PM(10) and PM(2.5)). Effect estimates based on entire pregnancy exposure were generally largest. Pooled estimates of decrease in birth weight ranged from 11.4 g (95% confidence interval -6.9-29.7) per 1 ppm CO to 28.1g (11.5-44.8) per 20 ppb NO(2), and pooled odds ratios for low birth weight ranged from 1.05 (0.99-1.12) per 10 μg/m(3) PM(2.5) to 1.10 (1.05-1.15) per 20 μg/m(3) PM(10) based on entire pregnancy exposure. Fewer effect estimates were available for preterm birth and results were mixed. Pooled odds ratios based on 3rd trimester exposures were generally most precise, ranging from 1.04 (1.02-1.06) per 1 ppm CO to 1.06 (1.03-1.11) per 20 μg/m(3) PM(10). Results were less consistent for ozone and sulfur dioxide for all outcomes. Heterogeneity between studies varied widely between pollutants and outcomes, and meta-regression suggested that heterogeneity could be partially explained by methodological differences between studies. While there is a large evidence base which is indicative of associations between CO, NO(2), PM and pregnancy outcome, variation in effects by exposure period and sources of heterogeneity between studies should be further explored. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The occurrence of lung cancer in man.

              M L Levin (1953)
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                29 March 2016
                December 2016
                : 124
                : 12
                : 1913-1918
                Affiliations
                [1 ]Department of Pediatrics,
                [2 ]Department of Environmental Medicine, and
                [3 ]Department of Population Health, New York University (NYU) School of Medicine, New York, New York, USA
                [4 ]NYU Wagner School of Public Service, New York, New York, USA
                [5 ]NYU College of Global Public Health, New York, New York, USA
                Author notes
                []Address correspondence to L. Trasande, Department of Pediatrics, New York University School of Medicine, 403 East 34th St., Room 115, New York, NY 10016 USA. Telephone (646) 501-2520. E-mail: leonardo.trasande@ 123456nyumc.org
                Article
                ehp.1510810
                10.1289/ehp.1510810
                5132647
                27022947
                6157fe58-351e-4bfb-a29d-0be542d398fd

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 28 September 2015
                : 4 December 2015
                : 9 March 2016
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article