135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chemosensory signal transduction guides the behavior of many insects, including Anopheles gambiae, the major vector for human malaria in sub-Saharan Africa. To better understand the molecular basis of mosquito chemosensation we have used whole transcriptome RNA sequencing (RNA-seq) to compare transcript expression profiles between the two major chemosensory tissues, the antennae and maxillary palps, of adult female and male An. gambiae.

          Results

          We compared chemosensory tissue transcriptomes to whole body transcriptomes of each sex to identify chemosensory enhanced genes. In the six data sets analyzed, we detected expression of nearly all known chemosensory genes and found them to be highly enriched in both olfactory tissues of males and females. While the maxillary palps of both sexes demonstrated strict chemosensory gene expression overlap, we observed acute differences in sensory specialization between male and female antennae. The relatively high expression levels of chemosensory genes in the female antennae reveal its role as an organ predominately assigned to chemosensation. Remarkably, the expression of these genes was highly conserved in the male antennae, but at much lower relative levels. Alternatively, consistent with a role in mating, the male antennae displayed significant enhancement of genes involved in audition, while the female enhancement of these genes was observed, but to a lesser degree.

          Conclusions

          These findings suggest that the chemoreceptive spectrum, as defined by gene expression profiles, is largely similar in female and male An. gambiae. However, assuming sensory receptor expression levels are correlated with sensitivity in each case, we posit that male and female antennae are perceptive to the same stimuli, but possess inverse receptive prioritizations and sensitivities. Here we have demonstrated the use of RNA-seq to characterize the sensory specializations of an important disease vector and grounded future studies investigating chemosensory processes.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms

          The hippocampal expression profiles of wild-type mice and mice transgenic for δC-doublecortin-like kinase were compared with Solexa/Illumina deep sequencing technology and five different microarray platforms. With Illumina's digital gene expression assay, we obtained ∼2.4 million sequence tags per sample, their abundance spanning four orders of magnitude. Results were highly reproducible, even across laboratories. With a dedicated Bayesian model, we found differential expression of 3179 transcripts with an estimated false-discovery rate of 8.5%. This is a much higher figure than found for microarrays. The overlap in differentially expressed transcripts found with deep sequencing and microarrays was most significant for Affymetrix. The changes in expression observed by deep sequencing were larger than observed by microarrays or quantitative PCR. Relevant processes such as calmodulin-dependent protein kinase activity and vesicle transport along microtubules were found affected by deep sequencing but not by microarrays. While undetectable by microarrays, antisense transcription was found for 51% of all genes and alternative polyadenylation for 47%. We conclude that deep sequencing provides a major advance in robustness, comparability and richness of expression profiling data and is expected to boost collaborative, comparative and integrative genomics studies.
            • Record: found
            • Abstract: found
            • Article: not found

            Odourant reception in the malaria mosquito Anopheles gambiae

            Summary The mosquito Anopheles gambiae is the major vector of malaria in sub-Saharan Africa. It locates its human hosts primarily through olfaction, but little is known about the molecular basis of this process. Here we functionally characterize the Anopheles gambiae Odourant Receptor (AgOr) repertoire. We identify receptors that respond strongly to components of human odour and that may act in the process of human recognition. Some of these receptors are narrowly tuned, and some salient odourants elicit strong responses from only one or a few receptors, suggesting a central role for specific transmission channels in human host-seeking behavior. This analysis of the Anopheles gambiae receptors permits a comparison with the corresponding Drosophila melanogaster odourant receptor repertoire. We find that odourants are differentially encoded by the two species in ways consistent with their ecological needs. Our analysis of the Anopheles gambiae repertoire identifies receptors that may be useful targets for controlling the transmission of malaria.
              • Record: found
              • Abstract: found
              • Article: not found

              Odor-mediated behavior of Afrotropical malaria mosquitoes.

              The African mosquito species Anopheles gambiae sensu lato s.l. and Anopheles funestus rank among the world's most efficient vectors of human malaria. Their unique bionomics, particularly their anthropophilic, endophagic and endophilic characters, guarantee a strong mosquito-host interaction, favorable to malaria transmission. Olfactory cues govern the various behaviors of female mosquitoes and here we review the role of semiochemicals in the life history of African malaria vectors. Recent evidence points towards the existence of human-specific kairomones affecting host-seeking A. gambiae s.l., and efforts are under way to identify the volatiles mediating this behavior. Based on examples from other Culicidae spp., it is argued that there is good reason to assume that mating, sugar feeding, and oviposition behavior in Afrotropical malaria vectors may also be mediated by semiochemicals. It is foreseen that increased knowledge of odor-mediated behaviors will be applied in the development of novel sampling techniques and possibly alternative methods of intervention to control malaria.

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2011
                27 May 2011
                : 12
                : 271
                Affiliations
                [1 ]Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
                [2 ]Center for Human Genetics Research, Vanderbilt University, Nashville, TN, USA
                Article
                1471-2164-12-271
                10.1186/1471-2164-12-271
                3126782
                21619637
                615e0845-0b59-4e93-81cd-2b6f0c11c756
                Copyright ©2011 Pitts et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 March 2011
                : 27 May 2011
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log