36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analytical tools for the analysis of β-carotene and its degradation products

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β-Carotene, the precursor of vitamin A, possesses pronounced radical scavenging properties. This has centered the attention on β-carotene dietary supplementation in healthcare as well as in the therapy of degenerative disorders and several cancer types. However, two intervention trials with β-carotene have revealed adverse effects on two proband groups, that is, cigarette smokers and asbestos-exposed workers. Beside other causative reasons, the detrimental effects observed have been related to the oxidation products of β-carotene. Their generation originates in the polyene structure of β-carotene that is beneficial for radical scavenging, but is also prone to oxidation. Depending on the dominant degradation mechanism, bond cleavage might occur either randomly or at defined positions of the conjugated electron system, resulting in a diversity of cleavage products (CPs).

          Due to their instability and hydrophobicity, the handling of standards and real samples containing β-carotene and related CPs requires preventive measures during specimen preparation, analyte extraction, and final analysis, to avoid artificial degradation and to preserve the initial analyte portfolio. This review critically discusses different preparation strategies of standards and treatment solutions, and also addresses their protection from oxidation. Additionally, in vitro oxidation strategies for the generation of oxidative model compounds are surveyed. Extraction methods are discussed for volatile and non-volatile CPs individually. Gas chromatography (GC), (ultra)high performance liquid chromatography (U)HPLC, and capillary electrochromatography (CEC) are reviewed as analytical tools for final analyte analysis. For identity confirmation of analytes, mass spectrometry (MS) is indispensable, and the appropriate ionization principles are comprehensively discussed. The final sections cover analysis of real samples and aspects of quality assurance, namely matrix effects and method validation.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease.

          Lung cancer and cardiovascular disease are major causes of death in the United States. It has been proposed that carotenoids and retinoids are agents that may prevent these disorders. We conducted a multicenter, randomized, double-blind, placebo-controlled primary prevention trial -- the Beta Carotene and Retinol Efficacy Trial -- involving a total of 18,314 smokers, former smokers, and workers exposed to asbestos. The effects of a combination of 30 mg of beta carotene per day and 25,000 IU of retinol (vitamin A) in the form of retinyl palmitate per day on the primary end point, the incidence of lung cancer, were compared with those of placebo. A total of 388 new cases of lung cancer were diagnosed during the 73,135 person-years of follow-up (mean length of follow-up, 4.0 years). The active-treatment group had a relative risk of lung cancer of 1.28 (95 percent confidence interval, 1.04 to 1.57; P=0.02), as compared with the placebo group. There were no statistically significant differences in the risks of other types of cancer. In the active-treatment group, the relative risk of death from any cause was 1.17 (95 percent confidence interval, 1.03 to 1.33); of death from lung cancer, 1.46 (95 percent confidence interval, 1.07 to 2.00); and of death from cardiovascular disease, 1.26 (95 percent confidence interval, 0.99 to 1.61). On the basis of these findings, the randomized trial was stopped 21 months earlier than planned; follow-up will continue for another 5 years. After an average of four years of supplementation, the combination of beta carotene and vitamin A had no benefit and may have had an adverse effect on the incidence of lung cancer and on the risk of death from lung cancer, cardiovascular disease, and any cause in smokers and workers exposed to asbestos.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            LXXIII.—Oxidation of tartaric acid in presence of iron

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS.

              In recent years, high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection has been demonstrated to be a powerful technique for the quantitative determination of drugs and metabolites in biological fluids. However, the common and early perception that utilization of HPLC-MS/MS practically guarantees selectivity is being challenged by a number of reported examples of lack of selectivity due to ion suppression or enhancement caused by the sample matrix and interferences from metabolites. In light of these serious method liabilities, questions about how to develop and validate reliable HPLC-MS/MS methods, especially for supporting long-term human pharmacokinetic studies, are being raised. The central issue is what experiments, in addition to the validation data usually provided for the conventional bioanalytical methods, need to be conducted to confirm HPLC-MS/MS assay selectivity and reliability. The current regulatory requirements include the need for the assessment and elimination of the matrix effect in the bioanalytical methods, but the experimental procedures necessary to assess the matrix effect are not detailed. Practical, experimental approaches for studying, identifying, and eliminating the effect of matrix on the results of quantitative analyses by HPLC-MS/MS are described in this paper. Using as an example a set of validation experiments performed for one of our investigational new drug candidates, the concepts of the quantitative assessment of the "absolute" versus "relative" matrix effect are introduced. In addition, experiments for the determination of, the "true" recovery of analytes using HPLC-MS/MS are described eliminating the uncertainty about the effect of matrix on the determination of this commonly measured method parameter. Determination of the matrix effect allows the assessment of the reliability and selectivity of an existing HPLC-MS/MS method. If the results of these studies are not satisfactory, the parameters determined may provide a guide to what changes in the method need to be made to improve assay selectivity. In addition, a direct comparison of the extent of the matrix effect using two different interfaces (a heated nebulizer, HN, and ion spray, ISP) under otherwise the same sample preparation and chromatographic conditions was made. It was demonstrated that, for the investigational drug under study, the matrix effect was clearly observed when ISP interface was utilized but it was absent when the HN interface was employed.
                Bookmark

                Author and article information

                Journal
                Free Radic Res
                Free Radic. Res
                IFRA
                ifra20
                Free Radical Research
                Taylor & Francis
                1071-5762
                1029-2470
                4 May 2015
                20 April 2015
                : 49
                : 5
                : 650-680
                Affiliations
                [ a ]Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg , Salzburg, Austria
                [ b ]Division of Genetics, Department of Cell Biology, University of Salzburg , Salzburg, Austria
                Author notes
                Correspondence: Dr. Hanno Stutz, Division of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg , A-5020 Salzburg, Austria. Tel: + 43 (0)662 8044 5950. Fax: + 43 (0)662 8044 5751. E-mail: hanno.stutz@ 123456sbg.ac.at
                Article
                1022539
                10.3109/10715762.2015.1022539
                4487603
                25867077
                616aa42c-26b2-4a00-acf8-8e7c722d7b9e
                © 2015 Informa UK, Ltd.
                History
                : 5 November 2014
                : 20 February 2015
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 194, Pages: 31
                Categories
                Review Article

                Molecular biology
                β-carotene,cleavage products,extraction and analysis methods,in vitro oxidation methods,quantification and validation

                Comments

                Comment on this article